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Task: adapt a PLM to new domains
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pre-training

Task: adapt a PLM to new domains

Pretrain a model using data from 
heterogeneous domains
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• PLMs need adaptation to specific domains (Han and Eisenstein, 
2019; Lee et al., 2020; Gururangan et al., 2020) 

• Efficient adaptation with: 
- Domain-aware MoE (Gururangan et al., 2022; Li et al., 2022) 

 - Hierarchical domain adapters (Chronopoulou et al., 2022) 
 - Prompt tuning (Guo et al., 2022)


• Averaging the weights of fine-tuned models:

 - Model soups (Wortsman et al., 2022)  
 - Fisher-weight averaging (Matena and Raffel, 2022) 
 - Domain-Expert LMs (Li et al., 2022)
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Model soups              
(Wortsman et al., 2022)

   Weight-space averaging
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Fisher-weighted averaging 
(Matena and Raffel, 2022)
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Fig.  from Matena and Raffel (2022).
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Fisher-weighted averaging 
(Matena and Raffel, 2022)
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Inference cost of a single model!



• Can we average the weights of independently trained 
adapters to improve domain generalization of a PLM?


• How to select which adapters to combine?
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• We average the weights of selected adapters at test time 
      

     AdapterSoup(x) = f(x,
1
l

l

∑
i=1

θi)

   AdapterSoup
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How are the domain adapters selected?
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Uniform average

   

• Weight-average all trained adapters (k = number of training 

domains)


     


• This corresponds to a uniform soup (Wortsman et al., 2022)

AdapterSoup(x) = f(x,
1
k

k

∑
i=1

θi)
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uniform soup (Wortsman 
et al., 2022)



Sentence similarity


• sentence-BERT to compute sentence embeddings (Reimers and 
Gurevych, 2019) 

• Sentence sim. between each training domain + novel domain


• AdapterSoup in order of highest cosine sim.

How are the domain adapters selected?
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Clustering


• Using PLM representations of our k training domains, we fit a 
GMM with k components (Aharoni and Goldberg, 2020) 

• Using sample of new domain, find which clusters it is mapped to


• Weight-average adapters of training domains that are closest to  
held-out domain text

How are the domain adapters selected?

29



Clustering


• Using PLM representations of our k training domains, we fit a 
GMM with k components (Aharoni and Goldberg, 2020) 

• Weight-average adapters of training domains that are closest to  
new domain

How are the domain adapters selected?

30



• Motivation

• Proposed Approach

• Experiments 
• Conclusion

31



Experimental setup

• PLM: GPT-2 

• Adapters: bottleneck size 64

• Baselines: 


GPT-2 (no further training)

single adapter selected using sentence similarity, clustering
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Datasets
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We use data from C4 (Raffel et al., 2020)



Results
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Perplexity shown 



Results

35

Perplexity shown 

Using (almost any) AdapterSoup is preferable to 

GPT-2 without further training or to a single adapter



Results
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Perplexity shown 

Hierarchy adapter: lower ppl but at a (much) higher

training and inference cost



Results
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Perplexity shown 

AdapterSoup using clustering: best performance

at the inference cost of a single adapter



Analysis
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Models selected using AdapterSoup with 
sentence similarity and clustering
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Models selected using AdapterSoup with 
sentence similarity and clustering

• Tripadvisor & Ncbi: Both 
methods select almost same 
domains


• Reuters: good match with  
clustering, sentence sim. 
selects non-related domains
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Key Takeaways
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• AdapterSoup: weight-space averaging of selected adapters 
trained on top of a PLM to adapt to new domains 

• Cost of a model at inference time


• Improves domain generalization of a PLM


• Weight-average adapters of training domains that are closest to  
held-out domain text
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