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    Overview: Multilingual NMT 

Decoder

Encoder
• Low-resource languages benefit from sharing the 

same representation space as high-resource 
languages (Firat et al., 2016; Zoph et al., 2016; Johnson 
et al., 2017) 

• Operational costs are reduced and models scale 
to a large number of language pairs (Arivazhagan et 
al., 2019; Aharoni et al., 2019)

model θ
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• Encoder-decoder Transformer


• Denoising autoencoding in multiple 
languages (Lewis et al., 2020, Liu et al., 2020) 

• Monolingual data of 50 languages during 
pre-training


• Has not been trained for MT
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    mBART-50: A multilingual pretraining model (Tang et al., 2020)



    mBART-50 for NMT
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• Not all languages are modeled equally well

• The entire model needs to be updated

• It is still required to fine-tune the entire model (680M params)
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• A new set of adapters can be trained 
for each language pair


• This works well for high-resource 
languages (Bapna and Firat, 2019) 

• But does not work for low-resource 
languages, because there is no 
sharing between related languages

    Leveraging pretrained multilingual models for NMT    Pre-training methods for NMT    Efficient fine-tuning for NMT: Language-pair adapters
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• A new set of adapters can be 
trained for all language pairs 
(Stickland et al., 2021)


• This suffers from negative 
interference between unrelated 
languages

    Leveraging pretrained multilingual models for NMT    Pre-training methods for NMT    Efficient fine-tuning for NMT: Language-agnostic adapters
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Language-agnostic adapters              
(Stickland et al., 2021)

Language-pair adapters              
(Bapna and Firat, 2019)



    Leveraging pretrained multilingual models for NMT    Pre-training methods for NMT    Efficient fine-tuning for NMT
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Language-agnostic adapters              
(Stickland et al., 2021)

Language-pair adapters              
(Bapna and Firat, 2019)

Can we share information between 
similar languages while avoiding 

negative inteference?
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    Language-family adapters for multilingual NMT    Language-family adapters for low-resource multilingual NMT

Idea: We encode the similarities between related languages 
with adapters trained on each language family.
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    Language-family adapters for multilingual NMT
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PersianEnglish

    Adding adapters to mBART-50
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    Language-family adapters for multilingual NMT    Adding adapters to mBART-50
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IndonesianEnglish
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    Language-family adapters for multilingual NMT
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    Adding adapters to mBART-50

SerbianEnglish
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    Language-family adapters for multilingual NMT
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    Adding adapters to mBART-50

SerbianEnglish

Independently-trained 
adapters for various 

language pairs



    Text    Language-family adapters for multilingual NMT
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    Adding adapters to mBART-50

When in same family 
-> cluster together?



    Text    Language-family adapters for multilingual NMT    Our model: Language-family adapters
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    Text    Language-family adapters for multilingual NMT    Training for MT
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    Training for MT
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• PLM: mBART-50 (trained on monolingual data, ~680M params)

• Adapters: bottleneck size 512

• Translation: En->XX

• Baselines: 


Language-pair adapters

Language-agnostic adapters
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   Experimental Setup
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   Datasets

• TED talks (Qi et al., 2018) and 
OPUS-100 (Zhang et al., 2020) for 17 
low-resource languages (and 
English)


• Language families: Indo-Iranian (I), 
Balto-Slavic (BS), Austronesian (A)


• Starred languages do not appear 
in mBART-50 pretraining corpus 



    Main results     Main results 

Test set BLEU (  ) scores when translating out of English ( en -> xx).
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    Main results     Main results 

Test set BLEU (  ) scores when translating out of English ( en -> xx).

Language-family adapters consistently outperform the 
baselines on both parallel datasets
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    Main results     How does performance vary per language family? 
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    Main results     How does performance vary per language family? 
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• Compared to lang-agnostic, our 
approach performs better, 
possibly because of avoiding 
negative interference


• Compared to lang-pair, in BS 
results equivalent, as many of 
these languages similar to 
languages in pretraining corpus



    Main results     Does the approach perform better in seen or unseen languages? 
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    Main results     Does the approach perform better in seen or unseen languages? 
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• Larger performance 
improvement for unseen 
languages


• Caveat: all languages are 
covered by mBART’s 
vocabulary



    Ablation    Does the embedding layer help?
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Test set BLEU scores ( en -> xx) on OPUS-100.



    Ablation    Analysis

• On average improve translation scores, only add +0.1% 
of the parameters of mBART-50


• They encode lexical-level information for the languages of 
interest
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    Does the embedding layer help?

Test set BLEU scores ( en -> xx) on OPUS-100.



    Automatic clustering of languages          Analysis

Should we group languages based on linguistic knowledge or 
use an unsupervised, data-driven method?
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    Automatic clustering of languages          Automatic clustering of languages
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Test set BLEU scores ( en -> xx) on OPUS-100.



    Automatic clustering of languages          Automatic clustering of languages

• Clusters are mostly corresponding to the language families 
(except for be and ku)


• Performance is better using linguistic families
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Test set BLEU scores ( en -> xx) on OPUS-100.
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• We presented an approach that encodes the relations between 
languages using language-family adapters


• This is an effective and efficient method for MT from English to low-
resource languages


• Clustering languages together with a GMM might be helpful in the 
absence of linguistic knowledge bases

    Key Takeaways
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• Exploration of non English-centric models  


• Covering languages for which the vocabulary is unseen 


• More fine-grained grouping of languages

    Limitations
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