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Abstract

In this work !, we address the issue of poor performance in classification tasks due to scarcity of la-
beled data. To yield substantial improvements in classification tasks, we leverage pretrained represen-
tations and explore transfer learning methods, both in the form of pretrained classifiers and pretrained
language models. We then present a more effective and refined transfer learning approach, where
we introduce an auxiliary language model loss to the transferred model. The addressed issue is cru-
cial in deep learning and has only recently been tackled in the Natural Language Processing field, as
deep neural networks typically require an extended number of training annotated examples, yet large
quantities of data are often expensive and difficult to collect.

First, we propose a method for successfully utilizing a pretrained sentiment analysis classification
model to reduce the test error rate on an emotion recognition classification task. Transfer learning
from pretrained classifiers exploits the representation that a model has learned for one supervised
setting with plenty of data to obtain competitive results on a related task where only a small dataset
is available. We aim to leverage the learned representation of the pretrained classifier to tackle the
emotion classification task.

Next, we utilize pretrained representations from language models to address the same classifi-
cation task. A learning algorithm can use information learned in the unsupervised phase to perform
better in the supervised learning stage. Specifically, pretrained word representations captured by lan-
guage models are useful as they encode contextual information and model syntax and semantics. We
propose a three-step transfer learning method that includes pretraining a language model, fine-tuning
it on the target task and transferring the model to a classifier to leverage these representations. We
show an improvement of 10% on the WASSA 2018 emotion recognition dataset baseline. We achieve
a Fi-score of 70.3%, ranking in the top-3 positions of the respective competition.

Finally, we present a conceptually simple and effective transfer learning approach that addresses
the problem of catastrophic forgetting. Specifically, we combine the task-specific optimization func-
tional with an auxiliary language model objective, which is adjusted during the training process. This
preserves language regularities captured by language models, while enabling sufficient adaptation for
solving the target task. The introduction of the auxiliary language model loss allows us to explicitly
control the weighting of the pretrained part of the model and ensure that the distilled knowledge it en-
codes is preserved. Our approach shows robust results on 5 different classification datasets, where we
report significant boosts over the baselines. The performance improvement is more pronounced when
there is a mismatch between the pretraining and target task domains, which is the case in the Sarcasm
Corpus dataset amongst others, where we achieve a F-score of 75%, 1% below state-of-the-art. We
evaluate our model on a variety of classification tasks and demonstrate that our approach is able to
yield impressive results even on a handful of training examples.

Key words

transfer learning, language modeling, emotion recognition, sentiment analysis, unsupervised pretrain-
ing, multi-task learning, deep learning, recurrent neural networks

! Papers: [1], [2], [3] have been conducted under the development of this thesis.
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Chapter 1

Introduction

1.1 Transfer Learning

In the field of natural language processing, deep neural networks have improved the performance on a
variety of tasks. However, learning a new model for each different task requires significant amounts of
task-specific annotated data. To achieve top performance, these models typically need to be trained on
more than millions of tokens annotated for each specific task, such as syntactic parsing [9], question
answering [10, 11] and machine translation [12, 13].

However, in many real-world applications, there is a low availability of labeled data. In such sce-
narios, transfer learning offers an alternative solution, by leveraging the knowledge that a model has
obtained solving one task to tackle a different, yet similar, task. Transfer learning has recently allowed
a breakthrough in deep learning [ 14, 8], as it permits training networks in situations when limited train-
ing data are available. Transfer learning usually results in faster convergence and also achieves better
performance than the model would have, if it was trained end-to-end on a small dataset. Moreover, it
improves generalization, as pretrained models are purposefully trained on tasks that force the model to
learn generic features that are useful in related contexts. Thus, when the model is transferred to a new
task, it is less likely to overfit to the new training data. This generic pretrained feature representation
is immensely important for natural language processing. Transfer learning surpasses the need of vast
computational resources and extensive training.

A related direction is multi-task learning. Multi-task learning employs the similarities between
different tasks (problems) to perform better in all of them. In deep learning, we usually aim to learn a
highly informative feature representation of the input data and use it to make a prediction. By using
multi-task learning, we might increase the performance of our model even further by forcing it to
learn more generic representations. That way, implicit data augmentation is achieved, as the feature
representation is learned not only by training on a specific dataset, but also on simultaneous training
on datasets of similar tasks. In natural language processing, multi-task learning is used in a variety of
applications, including machine translation [15, 16, 17], semantic parsing [18, 19, 20, 21], sequence
labeling [22] and part-of-speech tagging [23].

1.2 Language Modeling

The goal of any transfer learning model is to obtain a generic feature representation while solving
one task and use this knowledge to tackle a related task. A task which is suitable for pretraining
is language modeling. Language modeling is a fundamental task of natural language processing,
which provides a probability distribution over a sequence of words and offers a unique representation
for each occurrence of a word, based on the context it is found in. It is thus able to encode the
nuances of language, modeling syntax and semantics. Language modeling allows obtaining high-
level feature representations and can provide a meaningful starting point for most supervised natural
language processing tasks.

Moreover, language modeling receives every word of a sequence as input and essentially tries to
predict the next word. Consequently, it does not require labeled training data, which are expensive and
hard to collect. Raw text, in contrast, is abundantly available for every conceivable domain. Language
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models can thus train on extensive corpora that are publicly available. Because of its ability to obtain
generic word representations and the availability of unlabeled data, language modeling has shown to
be effective for improving many natural language processing tasks [24, 25, 26, 27, 28]. Language
modeling pretraining has notably improved results in natural language inference [29], named entity
recognition [30], SQuAD question answering [31] and sentiment analysis [32].

1.3 Emotion Recognition & Sentiment Analysis

Emotion detection in natural language processing is the process of identifying discrete emotion ex-
pressed in text. Emotion analysis can be viewed as a natural evolution of sentiment analysis and its
more fine-grained model. Sentiment analysis, with thousands of articles written about its methods
and applications, is a well established field in natural language processing. It has proven very useful
in several applications such as marketing, advertising [33, 34], question answering systems [35].

Understanding emotions is prevalent in every society. Examples of applications of emotion recog-
nition can be found in political science [36], psychology, marketing [37], human-computer interaction
[38] and many more. In marketing, emotion detection can be used to analyze consumers reactions to
products and services to decide which aspect of the product should be changed to create a better rela-
tionship with customers in order to increase customer satisfaction [39]. Emotion detection, moreover,
can be used in human-computer interaction and recommender systems to produce interactions or rec-
ommendations based on the emotional state of the user [40]. By understanding the important role of
emotions in decision making process of humans, emotion detection can profit any entity or organiza-
tion such as commercial institutes, political campaigns, managing the response to a natural disaster.
It is also necessary to create better artificial intelligence tools, e.g. chatbots.

In the context of this thesis, we will be looking into transfer learning and multi-task learning tech-
niques for natural language processing, proposing a novel method that combines them. Specifically,
based on the fact that pretrained representations from unsupervised tasks are useful for supervised
tasks with few training data, we propose a method to leverage pretrained feature representations to
tackle different classification tasks. Specifically, we pretrain a language model on a generic Twitter
corpus and transfer it to a variety of different classification tasks, in the fields of emotion recognition,
sentiment analysis, emotion detection etc. We also introduce an auxiliary language model objective,
to allow our model to learn more generic representations and avoid overfitting. By combining both a
transfer learning and a multi-task learning approach, we propose a deep learning model able to tackle
a variety of tasks and present competitive results.

1.4 Thesis Outline

The thesis is structured as follows. In Chapter 2 the machine learning background theory is presented.
Specifically, the basic notions of machine learning are presented and then most traditional classifi-
cation models are explained. After the traditional models are presented, deep learning is introduced,
along with neural networks and especially recurrent neural networks (RNNs) and long short-term
memory units (LSTMs). Finally, transfer learning and multi-task learning notions are presented, along
with intuition about their usage. After the technical background is presented, Chapter 3 presents the
natural language processing background needed to understand this thesis. After briefly presenting
popular natural language processing tasks, language modeling is presented, initially in the form of a
n-gram model based on the Markov assumption and then as a recurrent neural network. Then, transfer
learning methods that are currently used to train natural language processing models are explained.
As soon as transfer learning from language models is explained, we address in Chapter 4 an emotion
recognition classification task and explain the methodology and transfer learning models implemented
to tackle this task. After laying out the model architecture, experimental results and conclusions are
presented. Afterwards, in Chapter 5, we propose a deep learning approach based on pretrained rep-
resentations captured by language models that addresses the problem of catastrophic forgetting, by
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adding an auxiliary language model objective to the transferred model. We leverage the abstract fea-
ture representations of language models and employ them to tackle downstream classification tasks.
The results of our conducted experiments on five different classification datasets are then presented.
Finally, in Chapter 6, our conclusions are presented and some ideas for future work are introduced.
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Chapter 2

Machine Learning Background

2.1 Definition of Machine Learning

Machine learning (ML) is an application of artificial intelligence (Al) that provides systems the ability
to automatically learn and improve from experience without being explicitly programmed. Machine
Learning algorithms allow computers to train on data inputs and use statistical analysis in order to
output values that fall within a specific range. The process of learning begins with observations or
data, such as examples, direct experience, or instruction, in order to look for patterns in data and
make better decisions in the future based on the examples that we provide. The primary aim is to
allow the computers learn automatically without human intervention or assistance and adjust actions
accordingly.

In ML, tasks are generally classified into broad categories. These categories are based on how
learning is received or how feedback on the learning is given to the system developed. Two of the most
widely adopted ML methods are supervised learning which trains algorithms based on example input
and output data that is labeled by humans, and unsupervised learning which provides the algorithm
with no labeled data in order to allow it to find structure within its input data.

2.2 Supervised Learning

In supervised learning, there are input variables (x) and an output variable (Y) and the goal is learning
the mapping function from the input to the output via an algorithm.

Y = f(X) @.1)

The goal is to approximate the mapping function so well that when new input data (x) are fed to the
model, the corresponding output variables (Y) could be successfully predicted. The process of an
algorithm learning from the training dataset can be thought of as a teacher supervising the learning
process. We know the correct answers (entitled labels), the algorithm iteratively makes predictions
on the training data and is corrected by the teacher. Learning stops when the algorithm achieves an
acceptable level of performance.

Supervised learning problems can be further grouped into regression and classification problems.

e Regression: the problem of predicting a continuous quantity. (y is continuous)

e Classification: deals with assigning observations into discrete categories, rather than predicting
continuous quantities. In the simplest case, there are two possible categories; this case is known
as binary classification. (y is categorical)

Supervised Learning with Neural Networks

In the case of neural networks, we restrict ourselves to search over specific families of functions,
e.g. the space of all linear functions with d;,, inputs and d,,; outputs, which are called Aypothesis
classes. This restriction takes place because searching over the set of all possible functions is a very
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hard (and rather ill-defined) problem. By restricting ourselves to a specific hypothesis class, we inject
the learner with inductive bias - a set of assumptions about the form of the desired solution, as well as
facilitating efficient procedures for searching for the solutions. One common hypothesis class is that
of high-dimensional linear function, i.e. functions of the form:

flx)=x-W+b (2.2)
€T E Rdln’W c RdinXdout’ b c Rdout

where the vector x is the input of the function, while the matrix W and the vector b are the param-
eters. The goal of the learner is to set the values of the parameters W and b such that the function
behaves as intended on a collection of input values ®1.;, = x1, ..., and the corresponding desired
outputs y1.x = Y1, ..., Yk. The task of searching over the space of functions is thus reduced to one
of searching over the space of parameters. It is common to refer to parameters of the function as ©.
For the linear model case, © = W, b.

2.3 Unsupervised Learning

In other machine learning problems, the training data consists of a set of input vectors & without
any corresponding target values. So, the goal of unsupervised learning is to find patterns where the
target values are unobservable, or infeasible to obtain. A large subclass of unsupervised tasks is the
problem of clustering. Clustering refers to grouping observations together in such a way that members
of a common group are similar to each other, and different from members of other groups. Another
very interesting class of unsupervised tasks is generative modeling. Generative models are models
that imitate the process that generates the training data. A good generative model would be able to
generate new data that resemble the training data in some sense. This type of learning is unsupervised
because the process that generates the data is not directly observable — only the data itself'is observable.

2.4 Traditional Classification Models

2.4.1 Loss Function

The goal of any supervised learning algorithm is to return a function f() that accurately maps input
examples to their desired labels, i.e., a function f() such that the predictions y = f(x) over the training
set are accurate. To make this more precise, the notion of a loss function is introduced, quantifying the
loss suffered when predicting g while the true label is y. Formally, a loss function L(g, y) assigns a
numerical score (a scalar) to a predicted output ¢ given the true expected output y. The loss function
should be bounded from below, with the minimum attained only for cases where the prediction is
correct. The parameters of the learned function are then set in order to minimize the loss L over the
training examples (usually, it is the sum of the losses over the different training examples that is being
minimized).

Given a labeled training set (Z1:n,Y1.,), @ per-instance loss function L and a parameterized
function f(x; ©), we define the corpus-wide loss with respect to the parameters O as the average loss
over all training examples:

N
£(0) =~ > L(f(s:0), ) 23)
=1

In this view, the training examples are fixed, and the values of the parameters determine the loss. The
goal of the training algorithm is then to set the values of the parameters ©, such that the value of £ is
minimized:

N
© = argmin £(0) = argmin % Z L(f(xi;0),y;). (2.4)
e e i=1
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Now, we will define the notion of entropy. Suppose we want to communicate a set of n events
from a particular probability distribution p of dataset X. Information entropy is the minimum average
encoding size of information in dataset X to communicate the events [41]:

H(p) = Zp(w)logp(lx) (2.5)

If entropy is high (encoding size is big on average), it means we have many inputs with small proba-
bilities. It can be seen as measure of uncertainty, apart from amount of information.

Cross-entropy is the minimum average encoding size of communicating an event from one distri-
bution for another distribution. Formally:

Hy(q) =Y _ qlx)log <p(1x)> (2.6)

xT

In the binary case (two categories) we define the binary entropy. It is the entropy of a Bernoulli
process with probability p of two values. Let X be a random variable that can take only two values,
0 and 1. If probability(X = 1) = p, then probability(X = 0) = 1 — p and the entropy is formally
defined by:

(2.7)

1 1
H(X) = plog+ (1= p)log

= —plogp — (1 — p)log(1 — p)

Binary cross-entropy loss is used in binary classification with conditional probability outputs. We
assume a set of two target classes labeled 0 and 1, with a correct label y € {0,1}. The classifier’s
output 7 is transformed using the sigmoid (also called logistic) function o (z) = H% to the range

[0, 1], and is interpreted as the conditional probability § = o(7) = P(y = 1|z). The prediction rule
is:

0, ifg<05

prediction = o
1, ifg>0.5.

The network is trained to maximize the log conditional probability logP(y = 1|x) for each training
example (z, y). The logistic loss is defined as:

Liogistic(9,y) = —ylogj — (1 — y)log(1 — 7). (28)

When we use logistic loss, we assume that the output layer is transformed using the sigmoid function.

The categorical cross-entropy loss (also referred to as negative log likelihood) is used when a
probabilistic interpretation of the scores is desired. Let y = yp), ..., Y[ be a vector representing
the true multinomial distribution over the labels 1,- -+, n, and let g = yp,. .., Yjp) be the linear
classifier’s output, which was transformed by the softmax function and represent the class membership
conditional distribution gj;; = P(y = 1|z). Then, the categorical cross-entropy loss for the nth
sample is:

Lcross-entropy(gi, yz) = _y[i]log(y[i]) (2.9)

To optimize the parameters of our model, we seek to maximize its likelihood, or else minimize the
average of the negative log likelihood of all the available /N training samples. The objective function
takes the following form:

N
X 1 N
Lcross—entropy(ya y) - _N § y[z]10g<y[z]) (2.10)
1=1
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where N is the number of training samples.

When training Neural Networks (NN), Equation 2.10 is particularly useful. The value of the
loss function L(g,y) allows computing the error of the NN in terms of the classification decisions
made for the IV samples. Instead of using the whole dataset in every iteration of the training process,
we usually compute the error over subsets off the training set (called batches). To learn the optimal
parameters for our models, we employ a parameter optimizer based on the computation of the gradient
VoL (y,y) to find a local minimum. The most popular algorithm in order to optimize the weights is
backpropagation [42]. The backpropagation algorithm relies on methodically computing the partial
derivatives (gradients) of each layer of a NN with respect to the parameters that need to be tuned using
the chain rule, in order to minimize the loss. Their weights are then updated accordingly. The error
computed by the partial derivatives configures the amount of alteration of the weights.

What we are actually trying to do when employing the backpropagation algorithm is to approx-
imate the local minima of the non-linear minimization problem. This problem cannot be solved in
polynomial time by any algorithm (it belongs to a group of problems called NP-problems).

2.4.2 Support Vector Machines (SVMs)

Suppose we have a two-class classification problem using linear models of the form

f(x) =wT - ¢(x) +b (2.11)

where ¢(x) denotes a fixed feature-space transformation, and we have made the bias parameter b
explicit. The training dataset comprises /N input vectors x1, . . ., & y with corresponding target values
Y1,...,yn where y; € {—1, 1}, and new data points « are classified according to the sign of f(x).
We shall assume for the moment that the training data set is linearly separable in feature space, so that
by definition there exists at least one choice of the parameters w and b such that a function of the form
2.11 satisfies f(x;) > 0 for points having y; = +1 and f(x;) < 0 for points having y; = —1, so
that y; f (x;) > 0 for all training points.

An example of a training set is shown in Figure 2.1a, where the samples that belong to the first
class are red and square, while the samples that belong to the second class are blue and circular.
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(a) Possible separation hyperplanes. (b) A maximal margin linear classifier.

Figure 2.1: Example of binary classification of two linearly separable classes.

There are infinite possible straight lines that separate the two classes. The goal of the SVM algo-
rithm is to find the most generalized separator. In other words, the SVM algorithm tries to find the
hyperplane for which the minimum distance between the two classes (margin) is as wide as possible.
The hyperplane that satisfies the above condition is the optimal hyperplane and can be shown in Figure
2.1b.
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If f () separates the data, the geometric distance between a point x; and a hyperplane f(x) =0
(o ()]
is =il

[l
classified, so that y; f(x;) > O for all i. Then, the distance between a point @; and the optimal
hyperplane is given by:

Furthermore, we are only interested in solutions for which all data points are correctly

yif(®:) _ yi(w"o(x:) +b) 2.12)
[|w]] [|w]

The margin is given by the perpendicular distance to the closest point xn from the dataset, and we wish
to optimize the parameters w and b in order to maximize this distance. Thus the maximum margin
solution is found by solving

L(w,b) = argmax {Hi’H min {y;(w' ¢(z;) + b)}} (2.13)
w,b ?

Maximizing m is equivalent to minimizing %| |w||2. Our problem now becomes:
.1 2
L(w) = argmin { -||w]| (2.14a)
w,b 2

yi(w'o(x;) +b) > 1, i=1,...,N. (2.14b)

The solution of equation 2.14a is given by Lagrange multipliers [43].

2.4.3 Logistic Regression (LR)

When it comes to classification, we are determining the probability of an observation to be part of
a certain class or not. Therefore, we wish to express the probability with a value between 0 and
1. A simple classification algorithm that generates values of that form is Logistic Regression (LR)
classifier.

Suppose we have a simple problem for a binary classifier, as the one described earlier in the same
Section. Let ¢;—1.y = @1,...,xy be the input vectors where y; € {0,1}. The activation of the
LR classifier is determined by applying a sigmoid function over the fitted line in order to get the final
classification decision. As described in SVMs:

1
= 2.15
o) = 7= @15)
The activation of LR for a given vector x is defined as follows:
T 1
hy(x) =0c(w @) = ———— (2.16)

1 4wl

The loss function to be minimized while fitting the LR to the training data is the following:

N

1

Sl +C Y log(exp(~yi(w a; + b)) + 1) 2.17)
=1

where C > 0 and b represent the coefficients of penalization of wrong classifications and the intercept
of the hyperplane.

LR is a highly efficient technique, that does not require vast computational resources, tuning, or
regularization. It thus provides a solid baseline for most NLP tasks. An obvious disadvantage is that
LR cannot solve non-linear problems, since its decision surface is linear. A common “trick” used in
order to apply LR to multi-class classification is to iteratively treat each pair of classes as a binary
classification problem, to which LR is performed.
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2.5 Deep Neural Networks

2.5.1 Introduction

Deep learning is a set of learning methods attempting to model data with complex architectures com-
bining different non-linear transformations. The elementary bricks of deep learning are the neural
networks, that are combined to form the deep neural networks. These techniques have enabled sig-
nificant progress in the fields of sound and image processing, including facial recognition, speech
recognition, computer vision, automated language processing, text classification. Potential applica-
tions are numerous. A spectacular example is the AlphaGo program, which learned to play the go
game by the deep learning method, and beat the world champion in 2016.

2.5.2 Artificial Neural Networks

An Atrtificial Neural Network (ANN) is a biologically inspired computational model that is patterned
after the network of neurons present in the human brain. The area of ANNs has originally been
inspired by the goal of modeling biological neural systems, but has since diverged and become a
matter of engineering and achieving good results in Machine Learning tasks. Thus, we first introduce
a very brief and high-level description of the biological system that have influenced a large portion of
Machine Learning.
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Figure 2.2: A biological neuron (left) and its mathematical notation (right). Figure from [4].

The basic computational unit of the brain is a neuron. Billions of neurons can be found in the
human nervous system. Figure 2.2 shows the comparison between a biological neuron and its math-
ematical notation. Each neuron receives input signals from its dendrites and produces output signals
along its (single) axon. The axon connects via synapses to dendrites of other neurons. In the compu-
tational model of a neuron, the signals that travel along the axons (e.g. xg) interact multiplicatively
(e.g. woz) with the dendrites of the other neuron based on the synaptic strength at that synapse (e.g.
wg). The idea is that the synaptic strengths (the weights w) are learnable and control the strength of
influence of one neuron on another. In the basic model, the dendrites carry the signal to the cell body
where they all get summed. If the final sum is above a certain threshold, the neuron can fire, sending
a spike along its axon. In the computational model, we assume that only the frequency of the firing
communicates information. We thus model the firing rate of the neuron with an activation function f,
which represents the frequency of the spikes along the axon. A common choice of activation function
is the sigmoid function o, since it takes a real-valued inputs and squashes it to range between 0 and 1.

In order to learn complex non-linear functions, architectures that combine several artificial neurons
can be designed and implemented. Such architectures are called Multi-Layer Perceptrons (MLPs).
Instead of MLPs, Feed-Forward Neural Networks (FFNNs) can also be implemented, where each
neuron connects with all neurons of the previous layer and there are no connections between the
neurons of the same layer.

Each neural network is composed of the following layers, as depicted in Figure 2.3:

e Input layer: This layer accepts the input data. It provides information from the outside world to
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Figure 2.3: A three-layer Neural Network. It contains three inputs, two hidden layers of four neurons
each and one output layer. Figure from [4].

the network without any further computation. Nodes just pass on the information to the hidden
layer.

e Hidden layer(s): There can be more than one hidden layers, which are used to preprocess the
inputs obtained by the previous layer. They extract the required features from the input data.
When moving to higher hidden layers, higher-level features are constructed.

e Output layer: After the data is preprocessed, a decision is made by the network in this layer.

Activation function

Activation functions are nodes that decide whether a neuron should be activated or not by introducing
non-linearities to its output. A neural network needs to add non-linear functions in order to perform
complex tasks and give accurate results. The functions that are commonly used as activation functions
are the following:

o Sigmoid.

The sigmoid non-linearity has the mathematical form:
1
o()

1 +e T
it takes a real-valued number and squashes it into range between 0 and 1. The function is
graphically illustrated in Figure 2.4.

(2.18)
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Figure 2.4: The sigmoid function.

Sigmoid function, however, has two major drawbacks: 1) at either tail of 0 or 1, the neuron’s
activation saturates and the gradient is almost zero. In other words, the gradient “vanishes”
and training stops. 2) The output of sigmoid is not centered to zero. Therefore, since the data
coming into a neuron is always positive, the gradient of the weights will either all be positive,
or all negative and undesirable zig-zagging dynamics would be introduced to the network.
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e Hyperbolic tangent (tanh).

The tanh non-linearity is shown on Figure 2.5. It squashes a real-valued number to the range
[-1, 1]. The advantage of this function is that the values of tanh are zero-centered, which helps
the next neuron during propagating. The tanh activation function follows this function:

et —e T
= tanh = — 2.19
(@) = tan(r) = S @19
Lop  —
/
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Figure 2.5: The tanh function.

Tanh function is simply a scaled sigmoid function, where tanh(x) = 20(2x)—1. Tanh function
is obviously zero-centered. Still, the saturation problem persists.

Rectified Linear Unit (ReLU).

ReLU is one of the most widely used activation functions. It computes the function:
f(z) = 27 = max(0, z) (2.20)

In other words, the activation is simply thresholded at zero.

ReLU does not involve computationally expensive operations (exponentials etc.) and thus con-
verges faster. It is also sparsely activated, which is desirable because for any negative input, the
function will not activate at all, thus making it more likely that neurons are actually process-
ing meaningful aspects of the problem (or are not “fired” at all). It also avoids the saturation
problem, due to its linear form. However, ReLU function is can easily cause the neurons to be
“stuck”. If the gradients computed are negative, then the output is always zero and the neuron
is unlikely to recover.

=10 -5 5 10

Figure 2.6: The ReLU function.



o Leaky ReLU.

Instead of the function being zero when x < 0, a leaky ReLU will instead have a small negative
slope (of @ = 0.01, or so). That is, the function computes:

if 0
x) = {x, ifx > .
ax, otherwise

So, Leaky ReLU fixes the “dying ReLU” problem, as it does not have zero-slope parts.
10 |
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Figure 2.7: The Leaky ReLU function.

Regularization

Equation 2.4 tries to minimize the loss and may result in overfitting the training data. Overfitting

occurs when we have such a rich model family that we do not just fit the underlying function, but we

in fact fit the noise as well. It naturally results in a model that does not generalize well on test data.
Regularization is a way to mitigate this undesirable behavior. To face potential loss of general-

ization, we impose restrictions to the form of the solution. Specifically, the loss function takes the

following form:

~

N

1

© =argmin £(O) = argminﬁ E L(f(xi;0),y;) + AR(O). (2.21)
© © i=1

The regularization term considers the parameter values and scores their complexity. We then look
for values that have both a low loss and low complexity. What regularization inherently intends to do
is penalize complex models and favor simpler ones.

A is a value that has to be set manually, based on the classification performance on a development
set (called hyperparameter). The regularizers R measure the norms of the parameter matrices and opt
for solutions with low norms. The 2 most common regularization norms are:

o [y regularization:

R, (W) = [[W[}5=> (W ;) (2.22)

,J

R takes the form of the standard Euclidean norm (Ly-norm) of the parameters, trying to keep the
sum of the squares of the parameter values low. Large model weights W/; ;) will be penalized,
since they are considered “unlikely”. Lo is often referred to as weight decay. As one can observe
from Equation 2.22, high weights are severely penalized, but weights with small values are only
negligibly affected.
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o [ regularization:

Rp,(W) =|[Wll1=> Wl (2.23)
4,J

The L, regularizer punishes uniformly low and high values and intends to decrease all non-zero
parameter values towards zero. So, it encourages sparse solutions, or else models with many
parameters with a zero value. The L, regularizer is also called a sparse prior or lasso [44].

e Dropout:

An effective technique for preventing neural networks from overfitting the training samples is
dropout training [45, 46]. Dropout is designed to prevent the network from learning to rely
on specific weights. It randomly sets to zero (drops) half of the neurons in the network (or
in a specific layer) in each training example, in the stochastic-gradient training. The dropout
technique is one of the key factors contributing to very strong results of neural networks.

Optimization

In order to train the model, we need to solve the optimization problem in Equation 2.21. A common
solution is to use a gradient-based method. A gradient (at a point) is the slope of the tangent to the
function at that point. It points to the direction of largest increase of the function. Gradient-based
methods seek to minimize the objective function £(©) by repeatedly computing an estimate of the
loss £ over the training set, computing the gradients of the parameters © of the model with respect to
the loss estimate and updating the parameters in the opposite direction of the gradient.

Gradient descent (GD) is one of the most popular algorithms to perform optimization in neural
networks. It computes the gradient of the cost function with respect to the parameters 6 for the entire
dataset. The learning rate () is a hyperparameter that controls the extent to which the parameters of
the model are adjusted with respect to the loss gradient. GD is formally defined as:

9 =0—nVyJ(0) (2.24)

Stochastic Gradient Descent (SGD) [47] in contrast performs a parameter update for each training
example x; and label y;:

0 =0—nVoJ(0;xi;y) (2.25)

Gradient descent performs redundant computations for large datasets, as it recomputes gradients for
similar examples before each parameter update. SGD does away with this redundancy by performing
one update at a time. It is therefore usually much faster and can also be used to learn online.

Vanilla gradient descent, however, does not guarantee good convergence. The learning rate needs
to be carefully tuned, as a small value leads to slow convergence, while a very large value can hinder
convergence and cause the loss function to fluctuate around the minimum or even diverge. Moreover,
the same learning rate applies to all parameter updates. If our data is sparse and our features have
very different frequencies, it is possible that we do not want to update them to the same extent, but
we instead want to perform larger updates for rarely occurring features. Finally, a key challenge
of minimizing highly non-convex error functions common for neural networks is avoiding getting
trapped in local minima that are suboptimal.

A number of alternate optimization algorithms have been introduced to tackle these problems.
Currently, optimization techniques with automatic regulation of the learning rate are used such as
Adagrad [48], Adadelta [49] and Adam [50], which is the most widely used optimization method in
Neural Networks for NLP.

Backpropagation
To minimize the cost function J(#) of a given neural network using the optimal set of values for
0 (weights, also denoted as w), we need to compute the gradient. Even though the mathematics of
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gradient computation for neural networks simply follow the chain-rule of differentiation, they can
become laborious and error-prone for complex networks. Fortunately, gradients can be efficiently
computed using the backpropagation algorithm [51, 52]. Backpropagation methodically computes the
derivatives of a complex expression using the chain-rule, while caching intermediary results. A neural
network is essentially a mathematical expression and can therefore be represented as a computation
graph, where each node corresponds to a specific weight of the network. To update the weights of the
network after each computation of the loss function, the key element is an expression for the partial
derlvatlve L of the loss function J with respect to any weight w in the network. By inspecting
the values of the partial derivatives, we gain intuition towards the sensitivity of the loss function with
respect to those parameters. The gradients are a measure of how well the neural network is performing
and help us in fine tuning the weights of the network to minimize the loss and find a model that fits
our data.

2.5.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a powerful and robust type of neural networks, that are partic-
ularly useful because of their internal memory. Connections between units of a RNN form a directed
graph along a sequence. This allows it to exhibit temporal dynamic behavior for a time sequence.
RNNSs use their internal state (memory) to process sequential data as inputs. Intuitively, RNNs are
able to remember important things about the input they received which enables them to make precise
predictions for the data that comes next. As one can observe in Figure 2.9, basic RNNs are nodes
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Figure 2.8: Unfolded basic recurrent neural network. Source: http://colah.github.io

organized into successive “layers”. The RNN first takes the xg from the sequence of input and it
outputs hg (hidden state). The hidden state iy along with next input x; is the input for the next step.
Accordingly, hy along with z is the input for the next step and so on. So, the RNN remembers the
context of the input it has already seen while training.

Formally, at each time step ¢, the equations that describe the function of the RNN are:

= fu(Whnhi—1 + Wheay + by) (2.26)
= f,(Wynhe +by) (2.27)

where h; is the hidden state at time step ¢, x; is the input vector at time step ¢, y; is the output vector
at time step ¢, by, is the bias for h, b, is the bias for y and f,, f;, are the activation functions for x
and h respectively. The are three separate matrices of weights: W, (input-to-hidden weights), W,
(hidden-to-hidden), and W, (hidden-to-output).

Bi-directional RNNs
As mentioned above, RNNs capture information about the sequential data they have seen until time
step ¢ and encode it in their hidden state. However, it is also possible to acquire more information by
reading a given sequence backwards, in order to make more accurate predictions. So, a bi-directional
RNN is obtained as follows:

We encode the input sequence from the beginning to the end (forward RNN) and also in reverse
(backward RNN). We then combine the hidden states of the two RNN layers in order to find the hldden

state for each time step. Specifically, we separately compute the hidden state of the forward RNN ht
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at time step ¢ as well as the corresponding hidden state of the backward RNN E and concatenate them
in order to compute the final hidden state at each timestep. To this end, the hidden state at time step ¢
is simply the concatenation of the two vectors, namely: hy = h¢|| h p—¢. The same applies for all the
T + 1 time steps of the input sequence.

Long Short-Term Memory (LSTM) unit

In theory, classic (or “vanilla”) RNNs can keep track of arbitrary long-term dependencies in the input
sequences. The problem of vanilla RNNs is computational (or practical) in nature: when training a
vanilla RNN using backpropagation, the gradients which are back-propagated can “vanish” (that is,
they can tend to zero) or “explode” (that is, they can tend to infinity), because of the computations
involved in the process, which use finite-precision numbers.

LSTM networks introduced by Hochreiter and Schmidhuber [53] partially overcome these problems
by preserving long-distance dependencies between words and distilling words that are not important
from the cell gate through its forget gate layer.
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Figure 2.9: The repeating module in an LSTM.
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Given a sequence 1, Ta, ..., Tt, ..., £, of vectors of an input sequence of length n, for vector x,
with inputs h;—; and c¢;—1, hy and ¢; are computed as follows:

fo = o(Wpay + Uphy_1 + by) (2.28)
it = o(Wixy + Uihy—1 + b;) (2.29)
0r = o(Wozs + Uphy—1 + by) (2.30)
ug = tanh(Wyxy + Uyhy—1 + by,) (2.31)
= Jt©ci—1+ 1 ©uy (2.32)
hi = oy © tanh(c) (2.33)

o Forget gate (f;): This gate decides what information should be thrown away or kept. Infor-
mation from the previous hidden state h;_; and information from the current input x; is passed
through the sigmoid activation function. Values come out between 0 and 1. The closer to 0
means to forget, and the closer to 1 means to keep.

o Input gate (i;): The previous hidden state and current input are passed into a sigmoid function,
that decides which values will be updated by forcing the values to be between 0 and 1 (0 means
unimportant and 1 means important). The hidden state and current input are also passed to the
tanh function to squish values between -1 and 1 (u;). Finally, the tanh output is multiplied with
the sigmoid output (i © u). The sigmoid output will filter the important information of tanh.

o Cell state (c;):The cell state gets pointwise multiplied by the forget vector. This has a possibility
of dropping values in the cell state if it gets multiplied by values near 0. Then we take the output
from the input gate and do a pointwise addition which updates the cell state to new values that
the neural network finds relevant.
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e Output gate (0;): The output gate decides what the next hidden state should be. As the hidden
state contains information on previous inputs, it is also used for predictions. First, the previous
hidden state and the current input are passed into a sigmoid function. Then, the newly modified
cell state is passed to the tanh function. We multiply the tanh output with the sigmoid output
(or ® tanh(c;)) to decide what information the hidden state should carry. The output is the
hidden state. The new cell state and the new hidden is then carried over to the next time step.

Self-Attention mechanism

The basic idea behind attention is that not all vectors in a given sequence contribute to the same degree
to the meaning that is expressed in the overall input. So, the model should not use all vectors equally
to make a prediction, but focus on the parts of the input that contain the most relevant information
for a given task. To implement this approach, an attention mechanism [54, 13] can be used in order
to find the relative importance of each input vector of a sequence. To amplify the contribution of the
most informative vectors, we assign a weight a; to the hidden step that corresponds to each vector h;.
We compute the fixed representation r of the whole input sequence, as the weighted sum of all hidden
states.

e, = tanh(Whhi + bh), e; € [—1, 1] (2.34)
exp(e;) -
Sy expler) ;é;

a;

T
r=>ah (2.36)
i=1
where W), and by, are the attention layer’s weights.

2.6 Transfer Learning

Motivation

In Machine Learning (and in particular Deep Learning), a ubiquitous problem is that models which
solve complex problems need vast amounts of data. Nevertheless, getting these amounts of data
for supervised models can become unfeasible due to time restrictions or computational limitations.
Moreover, models that are trained on small, specific datasets face a performance drop, when they are
used to tackle a different task, which might still be similar to the one they were trained on.

Figure 2.10: Transfer learning technique.

The goal of transfer learning is to improve learning in the farget task by leveraging knowledge
from the source task, as depicted in Figure 2.11.

Definition
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In transfer learning, the concepts of a domain and a task are used. A domain D consists of a fea-
ture space X and a marginal probability distribution P(X) over the feature space, where X =
x1,...,on € X. Given a domain D = {X, P(X)}, a task T" consists of a label space Y and a
conditional probability distribution P (Y| X) that is typically learned from the training data {z;, v;},
withx; € X andy; € Y.

Given a source domain Dg, a corresponding source task T'g, as well as a target domain D and a
target task 77, transfer learning’s objective is to enable us to learn the target conditional probability
distribution P(Y7|X7) in Dy with the information gained from Dg and T, where Dg # Dy or
Ts #+ Tr.

Qualitative analysis

There are three common measures by which transfer might improve learning, that are depicted in
Figure 2.11. First is the initial performance achievable in the target task using only the transferred
knowledge, before any further learning is done, compared to the initial performance of an ignorant
agent. Second is the amount of time it takes to fully learn the target task given the transferred knowl-
edge compared to the amount of time to learn it from scratch. Third is the final performance level
achievable in the target task compared to the final level without transfer. [5]
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Figure 2.11: Three ways in which transfer might improve learning, according to [5].

The case of unsupervised pretraining

A special case of transfer learning involves a scenario where source task is unsupervised and target task
is supervised. This scenario is particularly interesting because we often have very large amounts of
unlabeled training data, yet relatively little labeled training data. Training with supervised techniques
on the labeled subset often results in severe overfitting. By learning good representations from the
unlabeled data, we can perform better in the supervised learning task [55].

This transfer learning case is called unsupervised pretraining. This procedure is an example of
how a representation learned for one task (unsupervised learning, trying to capture the shape of the
input distribution) can sometimes be useful for another task (supervised learning). It is called pretrain-
ing, because it is supposed to be only a first step before a joint training algorithm is applied to fine-tune
all the layers together. In the context of supervised learning task, it can be viewed as a regularizer and
a form of parameter initialization.

e Regularizing effect: It is possible that pretraining initializes the deep neural network in a lo-
cation that would otherwise be inaccessible - for example, a region that is surrounded by areas
where the cost function varies so much from one example to another that only a very noisy
estimate of the gradient is given.

e Parameter initialization: Pretraining, in most cases, improves performance on the supervised
task. The basic idea is that some features that are useful for the unsupervised task may also be

useful for the supervised learning task.

36



2.7 Multi-task Learning

In multi-task learning (MTL)[56], we have several related predictions tasks. We would like to leverage
the information in one of the tasks in order to improve the accuracy on the other tasks. In deep learning,
the idea is to have different networks for the different tasks, but let the networks share some of their
structure and parameters. This way, a common predictive core (the shared structure) is influenced by
all the tasks, and training data for one task may help improve the predictions of the other ones.

In the context of deep learning with neural networks, multi-task learning is typically done with
either hard or soft parameter sharing.

Hard parameter sharing
It is generally applied by sharing the hidden layers between all tasks, while keeping several task-
specific output layers.

Task C
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Figure 2.13: Soft parameter sharing for MTL in deep neural networks. [6].
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Hard parameter sharing reduces the risk of overfitting. The intuition behind this is that the more
tasks we are learning simultaneously, the more our model has to find a common representation that
captures all of the tasks and the less our chance of overfitting on our original task.

Soft parameter sharing
On the other hand, in soft parameter sharing, each task has its own model and parameters. The distance

between the parameters of the model is regularized in order to encourage the parameters to be similar
[57].
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Chapter 3

Natural Language Processing Background

3.1

Definition of Natural Language Processing

Natural Language Processing (NLP) is a field of computer science, artificial intelligence (also called
machine learning), and linguistics concerned with the interactions between computers and human
(natural) languages. It is the process of a computer extracting meaningful information from natural
language input and/or producing natural language output. It is analysis of human language based on
semantics and various parsing techniques [58]. The goal of NLP is to identify the computational ma-
chinery needed for an agent to exhibit various forms of linguistic behavior. It also design, implement,
and test systems that process natural languages for practical applications. NLP is a discipline between
linguistics and computer science which is concerned with the computational aspects of the human
language faculty. The main task of it is to construct programs in order to process words and texts in
natural language. The main aspects of NLP are:

Information Retrieval (IR): It is concerned with storing, searching and retrieving of information
from text documents. It is a field within computer science closer to databases and relies on some
of the NLP methods.

Machine Translation (MT): It is related to automatic translation from one human language to
another [59].

Language Analysis: It is concerned with parsing of an input sentence to construct syntactic tree.
and further sentiment analysis is done to find meaningful words in a sentence.

The levels of language that NLP examines are:

Phonology: This level deals with the interpretation of speech sounds within and across words.
There are, in fact, three types of rules used in phonological analysis: 1) phonetic rules — for
sounds within words; 2) phonemic rules — for variations of pronunciation when words are spo-
ken together, and; 3) prosodic rules — for fluctuation in stress and intonation across a sentence.

Morphology: This level deals with the componential nature of words, which are composed of
morphemes — the smallest units of meaning.

Lexical: At this level, humans, as well as NLP systems, interpret the meaning of individual
words. Several types of processing contribute to word-level understanding — the first of these
being assignment of a single part-of-speech tag to each word. In this processing, words that
can function as more than one part-of-speech are assigned the most probable part-of-speech tag
based on the context in which they occur.

Syntactic: This level focuses on analyzing the words in a sentence so as to uncover the gram-
matical structure of the sentence.

Semantic: Semantic processing determines the possible meanings of a sentence by focusing
on the interactions among word-level meanings in the sentence. This level of processing can
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include the semantic disambiguation of words with multiple senses; in an analogous way to how
syntactic disambiguation of words that can function as multiple parts-of-speech is accomplished
at the syntactic level. Semantic disambiguation permits one and only one sense of polysemous
words to be selected and included in the semantic representation of the sentence.

e Discourse: While syntax and semantics work with sentence-length units, the discourse level of
NLP works with units of text longer than a sentence. That is, it does not interpret multi-sentence
texts as just concatenated sentences, each of which can be interpreted singly. Rather, discourse
focuses on the properties of the text as a whole that convey meaning by making connections
between component sentences.

e Pragmatic: This level is concerned with the purposeful use of language in situations and utilizes
context over and above the contents of the text for understanding The goal is to explain how
extra meaning is read into texts without actually being encoded in them. This requires much
world knowledge, including the understanding of intentions, plans, and goals.

3.2 NLP Tasks

Natural language processing provides both theory and implementations for a range of applications. In
fact, any application that utilizes text is a candidate for NLP. The most frequent applications utilizing
NLP include the following:

o Information Retrieval (IR) & Web Search: the science of searching for documents, for informa-
tion within documents, and for metadata about documents, as well as that of searching databases
and the World Wide Web.

o Information Extraction (IE): focuses on the recognition, tagging, and extraction into a struc-
tured representation, certain key elements of information, e.g. persons, companies, locations,
organizations, from large collections of text.

e Text Summarization: the process of distilling the most important information from a source in
order to produce an abridged version.

e Question Answering (QA): the response from documents to extracted or generated answer.

e Machine Translation (MT): the use of computer software in order to translate text or speech
from one natural language to another.

e Speech Recognition & Synthesis: the extraction of textual representation of a spoken utterance.
e Text Generation: A method for generating sentences from “keywords” or “headwords”.

e Natural Language Understanding and Generation (NLU, NLG): NLG system is like a translator
that converts a computer based representation into a natural language representation.

3.2.1 Sentiment Analysis

Sentiment analysis, also called opinion mining, is the field of study that analyzes people’s opinions,
sentiments, evaluations, appraisals, attitudes, and emotions towards entities such as products, services,
organizations, individuals, issues, events, topics, and their attributes. It represents a large problem
space [60]. Sentiment Analysis, in its simplest form, aims to detect positive, neutral or negative
feelings from text.

Opinions are central to almost all human activities because they are key influencers of our behav-
iors. Whenever we need to make a decision, we want to know others’ opinions. In the real world,
businesses and organizations always want to find consumer or public opinions about their products
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and services. Individual consumers also want to know the opinions of existing users of a product be-
fore purchasing it, and others’ opinions about political candidates before making a voting decision in a
political election. In the past, when an organization or a business needed public or consumer opinions,
it conducted surveys, opinion polls, and focus groups. Acquiring public and consumer opinions has
long been a huge business itself for marketing, public relations, and political campaign companies.

With the explosive growth of social media (e.g., reviews, forum discussions, blogs, micro-blogs,
Twitter, comments, and postings in social network sites) on the Web, individuals and organizations
are increasingly using the content in these media for decision making. For an organization, it may
no longer be necessary to conduct surveys, opinion polls, and focus groups in order to gather public
opinions because there is an abundance of such information publicly available. However, finding
and monitoring opinion sites on the Web and distilling the information contained in them remains
a formidable task because of the proliferation of diverse sites. Each site typically contains a huge
volume of opinion text that is not always easily deciphered in long blogs and forum postings. The
average human reader will have difficulty identifying relevant sites and extracting and summarizing
the opinions in them. Automated sentiment analysis systems are thus needed.

The levels on which sentiment analysis is performed are:

e Document level: The task at this level is to classify whether a whole opinion document expresses
a positive or negative sentiment [61, 62]. For example, given a product review, the system de-
termines whether the review expresses an overall positive or negative opinion about the product.
This task is commonly known as document-level sentiment classification. This level of analysis
assumes that each document expresses opinions on a single entity (e.g., a single product). Thus,
it is not applicable to documents which evaluate or compare multiple entities.

e Sentence level: The task at this level goes to the sentences and determines whether each sentence
expressed a positive, negative, or neutral opinion. Neutral usually means no opinion. This level
of analysis is closely related to subjectivity classification [63], which distinguishes sentences
(called objective sentences) that express factual information from sentences (called subjective
sentences) that express subjective views and opinions.

e Entity and Aspect level: Both the document level and the sentence level analyses do not discover
what exactly people liked and did not like. Aspect level performs finer-grained analysis. Instead
of looking at language constructs (documents, paragraphs, sentences, clauses or phrases), aspect
level directly looks at the opinion itself. It is based on the idea that an opinion consists of a
sentiment (positive or negative) and a target (of opinion). An opinion without its target being
identified is of limited use. Realizing the importance of opinion targets also helps us understand
the sentiment analysis problem better. For example, although the sentence “although the service
is not that great, I still love this restaurant” clearly has a positive tone, we cannot say that this
sentence is entirely positive. In fact, the sentence is positive about the restaurant (emphasized),
but negative about its service (not emphasized).

3.2.2 Emotion Recognition

Emotion Detection and Recognition from text is a recent field of research that is closely related to
Sentiment Analysis. Emotion Analysis aims to detect and recognize types of feelings through the
expression of texts, such as anger, disgust, fear, happiness, sadness, and surprise.

The Internet contains large collections of documents that can provide vast amounts of text. Sources
of text useful for emotion analysis may come from product reviews, news articles, stock market anal-
yses, personal blogs/journals, social network websites, forums, fiction excerpts, critiques, or political
debates; anywhere that people discuss and share their opinion freely could be a source. Out of the
many textual analysis tasks pursued, a growing area of interest is the automatic detection of emotion.
Being an important element in understanding human experience and communication, emotions have

41



been studied in the psychological and behavioral sciences disciplines. Methods of emotion detec-
tion are now possible with the foundations of textual analysis; however, the lack of consistency in
approaches creates challenges when trying to compare methods.

3.3 Language Modeling

Language models (LMs) compute the probability of occurrence of a number of words in a particular se-
quence. The probability of a sequence of 7" words {w1, wa, . . ., wr} is denoted as P(wq, we, . .., wr).
The key goal of language modeling is to provide adequate probabilistic information so that the likely
word sequences have a higher probability.

=T
P(wl,wg,...,wT): HP(wi|w1,w2,...,wi,1) (31)
i=1

3.3.1 N-gram Language Models

The simplest model that assigns probabilities to sentences and sequences of words is the n-gram lan-
guage model. In n-gram language modeling, we break up the process of predicting a word sequence
w1, ws, ..., wr into predicting one word at a time. To do this, we first decompose the probability
using the chain rule:

P(wl,wQ, e ,’U)T> = P(wl)P(wg\wl) e P(wT\wl,wQ, ey ’LUT_1) (32)

Markov chain

The language model probability P(w1, wa, ..., wr) is a product of word probabilities given a history
of preceding words. The intuition of the n-gram model is that instead of computing the probability of
a word given its entire history, we can approximate the history by using only the last few words. So,
to be able to estimate these word probability distribution, we limit the history to n words:

P(wT|w1, w2, ... ,wT_l) =~ P(wT|’LUT_n, e, W9, ’LUT_1) (33)

The model described in Equation 3.3, where we step through a sequence and consider for the
transitions only a limited history, is called a Markov chain and the number of previous states (in our
case, words) is the order of the model.

According to the Markov assumption, only a limited number of previous words affect the probabil-
ity of the next word. While the kth order Markov assumption is clearly wrong for any & (sentences can
have arbitrarily long dependencies), it still produces strong language modeling results for relatively
small values of k, and was the dominant approach for language modeling for decades.

Typically, the actual number of words in the history is based on how much training data are avail-
able. Most commonly, trigram language models are used, which consider a two-word history to
predict the third word. Language models may also be estimated over 2-grams (bigrams), single words
(unigrams), or any other order of n-grams.

Estimation

For the most common case of trigram language model, the estimation of word prediction probabilities
P(ws|wy,ws) is straightforward. We count how often in the training corpus the sequence w1y, wy is
followed by the word ws, as opposed to other words. According to maximum likelihood estimation,
we compute:

count(wy, wa, w3)

>y count(wy, wo, w)

P(wg\wl,wg) = (3-4)
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Perplexity

There are several metrics for evaluating language modeling. The application-centric ones evaluate
them in the context of performing a higher-level task, for example by measuring the improvement
in translation quality when switching the language-modeling component in a translation system from
model A to model B [64].

A more intrinsic evaluation of language models is using perplexity over unseen sentences. Per-
plexity is an information theoretic measurement of how well a probability model predicts a sample.
Low perplexity values indicate a better fit. Given a text corpus of n words wy, wa, . .., w, and a lan-
guage model function LM assigning a probability to a word based on its history, the perplexity of a
LM with respect to the corpus is:

2_% ?:1 logzLM(wi|w1:i71) (35)

Good language models (i.e., reflective of real language usage) will assign high probabilities to the
events in the corpus, resulting in lower perplexity values. The perplexity measure is a good indicator
of the quality of a language model. Perplexities are corpus specific, so perplexities of two language
models are only comparable with respect to the same evaluation corpus.

3.3.2 Neural Language Models

To overcome the shortcomings of traditional language models, non-linear neural network models have
been proposed. They allow conditioning on increasingly large context sizes with only a linear increase
in the number of parameters.

A neural probabilistic language model was popularized by Bengio et al. [7]. This model takes as
input vector representations of a word window of n previous words, which are looked up in a table C.
These vectors are now known as word embeddings. These word embeddings (C(w) € R%) are then
concatenated and fed into a hidden layer, whose output is provided to a softmax layer. So:

x = [C(w1);C(wa);...;C(wy)

] (3.6)
§ = P(wilwi.p) = LM (wy.,) = softmax(hW?2 + b?)

h =g(xW' 4+ b')
z = [C(w1); C(wz);...; C(wy)]
C’(w) = E[w]

where w; € V, E € RIVIXdw Wl g Rrdwxdiia pl ¢ Rdnis, W2 ¢ Rbiax|V] p2 ¢ RIVI,

V is a finite vocabulary. The vocabulary size |V|, ranges between 1,000 - 1,000,000 words, with
the common size being around 70,000 unique words.

More recently, feed-forward neural networks have been replaced with recurrent neural networks
[65] and long short-term memory networks (LSTMs) [54] for language modeling.

3.4 Transfer Learning

Most NLP models, nowadays, rely on fixed distributional pretrained word representations, such as
word2vec [8] and GloVe [66] to initialize their embedding layer. While such pretrained word vectors
capture semantic similarities, they have limitations and cannot model context. Since they only assign
one vector to each unique word, they cannot handle polysemy, figurative usage of language or a
context that is highly different than the one they were pretrained on. Therefore, they cannot model the
complexity and nuances of language. To this end, contextual pretrained word representations from
language models have been proposed [25, 32], that assign a word vector to a word based on the context
they find it in.
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Figure 3.1: A feed-forward neural network language model. [7]

3.4.1 Word Embeddings

The key idea behind the unsupervised word vectors is that one would like the embedding vectors
of “similar” words to have similar vectors. While word similarity is hard to define and is usually
very task-dependent, current approaches derive from the distributional hypothesis [67], stating that
words are similar if they appear in similar contexts. Different methods all create supervised training
instances in which the goal is to either predict the word from its context, or predict the context from
the word. Perhaps the most important set of pretrained embedding vectors is word2vec. Word2vec is
an approximation of language modeling, applied to a fixed word window.

Word2vec [8]

Word2vec is a shallow, two-layer neural network which is trained to reconstruct linguistic contexts of
words. It takes as its input a large corpus of words and produces a vector space, typically of several
hundred dimensions, with each unique word in the corpus being assigned a corresponding vector in
the space. Word vectors are positioned in the vector space such that words that share common contexts
in the corpus are located in close proximity to one another in the space. Word2Vec is a particularly
computationally-efficient predictive model for learning word embeddings from raw text.

Given enough data, usage and contexts, word2vec can make highly accurate guesses about a
word’s meaning based on past appearances. Those guesses can be used to establish a word’s asso-
ciation with other words (e.g. “king” is to “man” what “queen” is to “woman’), or cluster documents
and classify them by topic. Those clusters can form the basis of search, sentiment analysis and rec-
ommendations in such diverse fields as scientific research, legal discovery, e-commerce and customer
relationship management.

Word2Vec has two forms, the Continuous Bag-of-Words (CBOW) model and the Skip-Gram
model, as illustrated in Figure 3.3. When the feature vector assigned to a word cannot be used to
accurately predict that word’s context, the components of the vector are adjusted. Each word’s con-
text in the corpus is the feacher sending error signals back to adjust the feature vector. The vectors
of words judged similar by their context are nudged closer together by adjusting the numbers in the
vector.

o Continuous Bag of Words (CBOW)
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Figure 3.2: Word2vec training models. Taken from [8].

Supposing we want to predict word w;, the input to the model could be w;_o, w;—1, w;t1, Wit2,
the preceding and following words of the target word. The output of the neural network will be
w;. So, the CBOW model can be thought as learning word embeddings by training a model to
predict a word given its context.

o Skip-Gram

This model is the opposite of CBOW, as in this case the input of the model is w; and the output
would be w;_o, w;—1, w;t1,w;+2. The task, therefore, is to learn word embeddings by training
a model to predict context given a word.

Even though the distributional hypothesis offers an appealing platform for deriving word simi-
larities by representing words according to the contexts in which they occur, it has some inherent
limitations, which should be taken into account when using the derived representations. The most
important one, which has been largely examined in this thesis, is the lack of context.

Lack of context

The distributional approaches aggregate the contexts in which a term occurs in a corpus. The resultis a
context-free, or else context-independent word representation. An obvious problem that occurs is that
polysemous words (words with obvious multiple senses) cannot be modeled properly. For example,
a bank may refer to a financial institution or to the side of a river, a star may be an abstract shape, a
celebrity or an astronomical entity, etc. By assigning the same vector to all the senses of a given word,
language cannot be modeled in its complex form, as the meaning of numerous words evades.

Window of surrounding words

Another limitation comes from learning embeddings based only on a small window of surrounding
words, sometimes words such as good and bad share almost the same embedding [68], which is
problematic if used in tasks such as sentiment analysis [69]. At times these embeddings cluster se-
mantically similar words which have opposing sentiment polarities. This leads the downstream model
used for the sentiment analysis task to be unable to identify this contrasting polarities leading to poor
performance.
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3.4.2 Pretrained Word Representations from Language Models

Language models have recently been proposed to create word representations leveraging the context.
Traditional word embedding methods such as word2vec consider all the sentences where a word is
present in order to create a global vector representation of that word. However, a word can have
completely different senses or meanings in the contexts. Since the language modeling task allows
computing the joint probabilities over word sequences, it is an intuitively meaningful way of repre-
senting the context of a given word. Pretrained language models encode contextual information and
high-level features of language, modeling syntax and semantics. They thus enable NLP models to
better disambiguate meaning and understand the correct sense of a given word. The learned feature
representation contains distilled knowledge of a certain language.

Moreover, language modeling relies on unlabeled data, which can be easily found and do not
require extensive annotation. It is thus an appealing task, as it can leverage vast corpora that are
available online. Forinstance, Universal Language Model Fine-Tuning (ULMFiT) [25] was pretrained
on English Wikipedia.

Pretrained representations from language models can be used either as additional features ([32]
or they can be directly fine-tuned to the target task [25, 24]. When they are used as additional fea-
tures, task-specific architectures that include the pretrained representations as additional features are
needed. The fine-tuning approach, on the other hand, such as the one adopted by the Generative Pre-
trained Transformer (OpenAl GPT) [26], requires far less training parameters and is trained on the
downstream supervised learning tasks by simply fine-tuning the previous parameters. Moreover, in
the case of OpenAl Transformer, uni-directional language models are used to model the perplexities
of language. ELMo [32] and BERT [24], however, rely on bi-directional language models, in order
to enhance the feature representations that are then used to tackle various tasks.

We will now briefly discuss two methods of leveraging word representations from language mod-
els to tackle downstream tasks, namely ULMFIT and ELMo.

1) Universal Language Model Fine-Tuning [25]

In this work, an effective transfer learning method that can be applied to any task in NLP was
introduced. The proposed approach relies on pretraining a generic language model on a large unlabeled
corpus (e.g. Wikipedia), fine-tuning it to the target dataset and then transferring it to a classification
model and fine-tuning it until convergence.

Language Language

model model Classifer

Figure 3.3: The three steps of ULMFiT.

First, the authors pretrain a state-of-the-art language model AWD-LSTM [70] on Wiki-103 with
a vocabulary of approximately 300K words. The intuition is that an ImageNet-like corpus should be
used for natural language, in order to capture is general properties.

Then, they further fine-tune the general-domain language model to the target dataset, which they
treat as a corpus, removing the labels. They propose an elaborate fine-tuning scheme that relies on
discriminative fine-tuning and slanted triangular learning rate.

Discriminative fine-tuning

They propose a novel fine-tuning method, discriminative fine-tuning, building on the premise that
as different layers capture different types of information [71], they should not be fine-tuned to the same
degree. So, instead of using the regular stochastic gradient descent (2.25), they split the parameters 6
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into {01, ..., 6%}, where 6’ contains the parameters of the model at the [-th layer and L is the number
of layers of the model. Similarly, the learning rate of each layer is given by {1, ..., n’}, where n'
is the learning rate of the /-th layer. So, the SGD update with discriminative fine-tuning obtains the
following form:

0p =01 — 'V J(0) (3.7)

Slanted triangular learning rates

They also propose slanted triangular learning rates (STLR), a method that first linearly increases
the learning rate and then linearly decays it. The intuition is that for adapting the parameters of the
language model to task-specific features, it is desirable that a model quickly converges to a suitable
region of the parameter space in the beginning of training and then refines its parameters. STLR has
the following form:

cut = [T - cut_frac] (3.8)
L ift < cut
cut’
p= t—cut : (39)
1— —cut.(mil), otherwise
1+p-(ratio—1
Nt = Nmax P X ) (3.10)
ratio

where T' is the number of training iterations, cut_frac is the fraction of iterations they increase the
learning rate, cut is the iteration when they switch from increasing to decreasing the learning rate,
p is the fraction of the number of iterations they have increased or will decrease the learning rate
respectively. ratio specifies how much smaller the lowest learning rate is from the maximum learning
rate 7qz, and 7; is the learning rate at iteration £. STLR is a modification of triangular learning rates
[72].

Finally, the authors transfer the pretrained language model to a classification model, augmenting it
with two additional linear blocks and using gradual unfreezing to prevent overfitting, which basically
relies in first unfreezing the task-specific layer and fine-tune it for one epoch, then unfreeze the next
lower layer until all layers have been fine-tuned.

The proposed method achieves competitive performance, reducing the test error rates in a variety
of classification datasets. It requires, though, careful fine-tuning and uses sophisticated techniques to
adjust the source task distribution to the target task distribution.

2) Embeddings from Language Models (ELMo) [32]

ELMo embeddings are deep contextualized word representations that offer high quality repre-
sentations for language, modeling both complex characteristics of word use and adjusting them in
different linguistic contexts. The vectors are derived from a bi-directional LSTM that is trained with
a coupled language model (LM) objective on a large text corpus. ELMo representations are a func-
tion of all the internal layers of the bi-directional language model. They are used concatenated with
pretrained word vectors (such as word2vec, GloVe) to augment the information captured and result in
state-of-the-art results in different downstream tasks.

Given that for each token #y, mﬁM is a context-independent token representation (via token em-
beddings or a convolutional neural network (CNN) over characters), a L-layer bi-directional LSTM
(2.5.3) computes a set of 2. + 1 representations

- .
Ry = {afM REM R EM| =1, L} (3.11)
=hii' j=0,...,L}
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ELMo embeddings are given by a task-specific weighting of the intermediate layers of a pretrained
language model:

L
ELMOZaSk — E(Rk7 @task) — ,ytask Z S;askhééw (312)
j=0
where s'** are softmax-normalized weights and the scalar parameter v*** allows the task model to

scale the entire ELMo vector.

ELMo embeddings are then added to six benchmark datasets that include question answering,
textual entailment, semantic role labeling, coreference resolution, named entity extraction and sen-
timent analysis and establish new state-of-the-art results in all of them. However, the weighting of
the ELMo embeddings needs to be carefully tuned for every different task. Therefore, the proposed
method, although very effective, has some limitations and requires task-specific architectures.
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Chapter 4

Ensemble of Neural Transfer Learning Methods for
Implicit Emotion Classification

4.1 Introduction

Emotion recognition is a particularly interesting problem in NLP, as language usually reflects the
emotional state of an individual. Therefore, it is natural to study human emotions by understanding
how they are reflected in text. The task of automatically recognizing emotions from text has received
lots of attention from the scientific community. This task is in most cases formally defined as the
classification of words, phrases, or documents into a number of predefined emotion categories or
dimensions. In some cases, regression problems can also be formulated, as for example the task of
predicting the degree to which an emotion is expressed in text [73].

Social media, especially micro-blogging services like Twitter, have attracted lots of attention from
the NLP community. The language used is constantly evolving by incorporating new syntactic and
semantic constructs, such as emojis or hashtags, abbreviations and slang, making natural language
processing in this domain even more demanding. Moreover, the analysis of such content leverages
the high availability of datasets offered from Twitter, satisfying the need for large amounts of data
for training. Emotion recognition is particularly interesting in social media, as it has useful appli-
cations in numerous tasks, such as public opinion detection about political tendencies [74, 75, 76],
stock market monitoring [77, 78], tracking product perception [79], even detection of suicide-related
communication [80].

In the past, emotion analysis, like most NLP tasks, was tackled by traditional methods that included
hand-crafted features or features from sentiment lexicons [81, 82, 83] which were fed to classifiers
such as Naive Bayes and SVMs [84, 85, 86]. However, deep neural networks achieve increased per-
formance compared to traditional methods, due to their ability to learn more abstract features from
large amounts of data, producing state-of-the-art results in emotion recognition and sentiment analy-
sis [87, 88, 89].

In this chapter, we present our work to approach a multi-class classification task. The task consists

in predicting the emotion of a word excluded from a tweet. Removed words (or trigger-words) include
the terms “sad”, “happy”, “disgusted”, “surprised”, “angry”, “afraid” and their synonyms. Given a
tweet, we are asked to predict the emotion it conveys, specifically anger, disgust, fear, joy, sadness
and surprise.
We address this implicit emotion classification task (Implicit Emotion recognition Shared Task - [EST
[90]) leveraging abstract pretrained feature representations from models that have been trained on dif-
ferent tasks. Transfer learning offers a meaningful starting point in order to improve the performance
of a model on the given task. Our proposed model employs 3 different transfer learning schemes of
pretrained models: word embeddings, a sentiment model and language models.

4.2 Related Work

Transfer Learning (TL) uses knowledge from a learned task so as to improve the performance of a
related task by reducing the required training data [5, 91]. In computer vision, transfer learning is em-
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Figure 4.1: High-level overview of our transfer learning approaches.

ployed in order to overcome the deficit of training samples for some categories by adapting classifiers
trained for other categories [92]. Notable examples include face recognition [93] and visual question-
answering [94], where image features trained on ImageNet [14] and word embeddings estimated on
large corpora via unsupervised training are combined.

Following this logic, transfer learning methods have also been applied to NLP. Pretrained word
vectors [95, 66] have become standard components of most architectures. Prerained word represen-
tations have shown to improve models for entailment [96], sentiment analysis [97], summarization
[98], and question answering [99].

To obtain high quality word vectors, though, we need to introduce deep contextualized word rep-
resentations. These representations should address the challenge of modeling complex characteristics
of word use, such as syntax and semantics, and use them appropriately for different linguistic contexts.
Such vectors handle polysemy and encode the nuances of language.

Recently, approaches that leverage pretrained language models have emerged, which learn the
compositionality of language, capture long-term dependencies and context-dependent features. For
instance, ELMo contextual word representations [32] and ULMFIiT [100] achieve state-of-the-art
results on a wide variety of NLP tasks. Our work is mainly inspired by ULMFiT, which we extend to
the Twitter domain.

4.3 Proposed Model

All of our transfer learning schemes share the same architecture: A 2-layer LSTM with a self-attention
mechanism. It is shown in Figure 4.2.

Embedding Layer

The input to the network is a Twitter message, treated as a sequence of words. We use an embedding
layer to project the words wy, ws, ..., wy to a low-dimensional vector space R, where W is the size
of the embedding layer and N the number of words in a tweet.

LSTM Layer

An LSTM takes as input a sequence of word embeddings and produces word annotations hq, ho, ..., by,
where h; is the hidden state at time-step ¢, summarizing all the information of the sentence up to w;.
We use bidirectional LSTM to get word annotations that summarize the information from both direc-

ti(_ons. A bi-LSTM consists of a forward 7 that parses the sentence from w; to wy and a backward
f that parses it from wy to w;. We obtain the final annotation for each word h;, by concatenating
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Figure 4.2: The proposed model, composed of a 2-layer bi-LSTM with a deep self-attention mecha-
nism. When the model is initialized with pretrained LMs, we use uni-directional LSTM
instead of bi-directional.

the annotations from both directions, h; = h; || E, h; € R?F, where || denotes the concatenation
operation and L the size of each LSTM. When the network is initialized with pretrained LMs, we
employ unidirectional instead of bi-LSTMs.

Attention Layer

To amplify the contribution of the most informative words, we augment our LSTM with an attention
mechanism, which assigns a weight a; to each word annotation h;. We compute the fixed representa-
tion r of the whole input message, as the weighted sum of all the word annotations.

e; = tanh(Wph; +bp), e; € [—1,1] “4.1)
T

o exp(e;) 1 49
a; sz:1 €$p(6t)’ ; a; 4.2)

T
r=Sahi, re R 43)

i=1

where W}, and b, are the attention layer’s weights.

Output Layer

We use the representation r as feature vector for classification and we feed it to a fully-connected
softmax layer with L neurons, which outputs a probability distribution over all classes p. as described
in Eq. 4.4:

eWr+b
Pe = b
c Zie[l,L}(€WZT+bZ)

where W and b are the layer’s weights and biases.

(4.4)

4.3.1 Pretrained Word Embeddings

In the first approach, we train word2vec word embeddings with which we initialize the embedding
layer of our network. The weights of the embedding layer remain frozen during training. The word2vec
word embeddings are trained on the 550M Twitter corpus, with negative sampling of 5 and minimum
word count of 20, using Gensim’s [101] implementation. The resulting vocabulary contains 800, 000
words.
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4.3.2 Pretrained Classifier

In the second approach, we first train a sentiment analysis model on the sentiment analysis (Sent 17)
dataset, using the architecture described in Sec. 4.3. The embedding layer of the network is initialized
with our pretrained word embeddings. Then, we fine-tune the network on the IEST task, by replacing
its last layer with a task-specific layer.

4.3.3 Pretrained Language Model

The third approach consists of the following steps: (1) we first train a language model on a generic
Twitter corpus, (2) we fine-tune the LM on the task at hand and finally, (3) we transfer the embedding
and RNN layers of the LM, we add attention and output layers and fine-tune the model on the target
task.

LM Pretraining

We collect three Twitter datasets as described in Sec. 4.4.1 and for each one we train an LM. In each
dataset we use the 50,000 most frequent words as our vocabulary. Since the literature concerning LM
transfer learning is limited, especially in the Twitter domain, we aim to explore the desired characteris-
tics of the pretrained LM. To this end, our contribution in this research area lies in experimenting with
a task-relevant corpus (EmoCorpus), a generic one (GenCorpus) and a mixture of both (EmoCorpus+).

LM Fine-tuning
This step is crucial since, albeit the diversity of the general-domain data used for pretraining, the data
of the target task will likely have a different distribution.

We thus fine-tune the three pretrained LMs on the IEST dataset, employing two approaches. The
first is simple fine-tuning, according to which all layers of the model are trained simultaneously. The
second one is a simplified yet similar approach to gradual unfreezing, proposed in [100], which we de-
note as Sequential Unfreezing (SU). According to this method, after we have transfered the pretrained
embedding and LSTM weights, we let only the output layer fine-tune for n — 1 epochs. At the n*”
epoch, we unfreeze both LSTM layers. We let the model fine-tune, until epoch k£ — 1. Finally, at epoch
k, we also unfreeze the embedding layer and let the network train until convergence. In other words,
we experiment with pairs of numbers of epochs, {n, k}, where n denotes the epoch when we unfreeze
the LSTM layers and k the epoch when we unfreeze the embedding layer. Naive fine-tuning poses
the risk of catastrophic forgetting, or else abruptly losing the knowledge of a previously learnt task,
as information relevant to the current task is incorporated. Therefore, to prevent this from happening,
we unfreeze the model starting from the last layer, which is task-specific, and after some epochs we
progressively unfreeze the next, more general layers, until all layers are unfrozen. Our unfreezing
method is depicted in Figure 4.3.

classification layer

LM embedding
layer

classification layer

LM embedding
layer

classification layer

LM embedding

layer

epoch 1

epoch n

epoch k

Figure 4.3: Sequential unfreezing. We unfreeze the hidden layers of the LM at epoch n, and we also
unfreeze the embedding layer of the LM at epoch k.

LM Transfer
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This is the final step of our TL approach. We now have several LMs from the second step of the proce-
dure. We transfer their embedding and RNN weights to a final target classifier. We again experiment
with both simple and more sophisticated fine-tuning techniques, to find out which one is more helpful
to this task.

Furthermore, we introduce the concatenation method, which was inspired by the correlation of
language modeling and the task at hand. We use pretrained LMs to leverage the fact that the task
is basically a cloze test. In an LM, the probability of occurrence of each word, is conditioned on
the preceding context, P(w¢|ws, ..., w;—1). In RNN-based LMs, this probability is encoded in the
hidden state of the RNN, P (w¢|h;—1). To this end, we concatenate the hidden state of the LSTM, right
before the missing word, Ajmpiicit, to the output of the self-attention mechanism, 7:

' =1 || Rimplicit,  hi € R** (4.5)

where L is the size of each LSTM, and then feed it to the output linear layer. This way, we preserve
the information which implicitly encodes the probability of the missing word.

4.3.4 Ensembling

We combine the predictions of our 3 transfer learning schemes with the intent of increasing the gener-
alization ability of the final classifier. To this end, we employ a pretrained word embeddings approach,
as well as a pretrained sentiment model and a pretrained LM. We use two ensemble schemes, namely
unweighted average and majority voting.

Unweighted Average (UA)
In this approach, the final prediction is estimated from the unweighted average of the posterior prob-

abilities for all different models. Formally, the final prediction p for a training instance is estimated
by:

Q|

M
1
p = arg max Zp}-, pi € R¢ (4.6)
¢ i=1

where C' is the number of classes, M is the number of different models, ¢ € {1,..., C'} denotes one
class and p; is the probability vector calculated by model i € {1, ..., M} using softmax function.

Majority Voting (MYV)

Majority voting approach counts the votes of all different models and chooses the class with most
votes. Compared to UA, MV is affected less by single-network decisions. However, this schema does
not consider any information derived from the minority models. Formally, for a task with C classes
and M different models, the prediction for a specific instance is estimated as follows:

M
Ve = Z FZ(C)
=1

p = argmax v,
cef{l,..,C}

(4.7)

where v, denotes the votes for class ¢ from all different models, F; is the decision of the i*"* model,
which is either 1 or 0 with respect to whether the model has classified the instance in class ¢ or not
and p is the final prediction.
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4.4 Experiments & Results

4.4.1 Experimental Dataset

Apart from the [EST dataset, we employ a SemEval dataset for sentiment classification and other
manually-collected unlabeled corpora for our language models.

Unlabeled Twitter Corpora

We collected a dataset of 550 million archived English Twitter messages, from 2014 to 2017. This
dataset is used for calculating word statistics for our text preprocessing pipeline and training our
word2vec word embeddings presented in Sec. 4.3.1.

For training our language models, described in Sec. 4.3.3, we sampled three subsets of this cor-
pus. The first consists of 2 million (2M) tweets, all of which contain emotion words. To create the
dataset, we selected tweets that included one of the six emotion classes of our task (anger, disgust,
fear, joy, sadness and surprise) or synonyms. We ensured that this dataset is balanced by concate-
nating approximately 350K tweets from each category. The second chunk has 5M tweets, randomly
selected from the initial S550M corpus. We aimed to create a general sub-corpus, so as to focus on
the structural relationships of words, instead of their emotional content. The third chunk is composed
of the two aforementioned corpora. We concatenated the 2 million emotion dataset with 2 million
generic tweets, creating a final 4 million (4M) dataset. We denote the three corpora as EmoCorpus
(2M), EmoCorpus+ (4M) and GenCorpus (SM).

Sentiment Analysis Dataset

We use the dataset of SemEvall7 Task4A (Sent17) [102] for training our sentiment classifier as de-
scribed in Sec. 4.3.2. The dataset consists of Twitter messages annotated with their sentiment polarity
(positive, negative, neutral). The training set contains 56K tweets and the validation set 6K tweets.

4.4.2 Experimental Setup

Training

We use Adam algorithm [103] to optimize our networks, with mini-batches of size 64 and clip the
norm of the gradients [104] at 0.5, as an extra safety measure against exploding gradients. We also
used PyTorch [105] and Scikit-learn [106].

Hyperparameters
For all our models, we employ the same 2-layer attention-based LSTM architecture (Sec. 4.3). All
the hyperparameters used are shown in Table 4.1.

Layer P-Emb | P-Sent P-LM
Embedding 300 300 400
Embedding noise 0.1 0.1 0.1
Embedding dropout 0.2 0.2 0.2
LSTM size 400 400 | 600/800
LSTM dropout 0.4 0.4 0.4

Table 4.1: Hyper-parameters of our models.

4.4.3 Results

Baselines
In Table 4.3 we compare the proposed transfer learning approaches against two strong baselines: (1)
a Bag-of-Words (BoW) model with TF-IDF weighting and (2) a Bag-of~-Embeddings (BoE) model,
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where we retrieve the word2vec representations of the words in a tweet and compute the tweet repre-
sentation as the centroid of the constituent word2vec representations. Both BoW and BoFE features are
then fed to a linear SVM classifier, with tuned C' = 0.6. All of our reported F1-scores are calculated
on the evaluation (dev) set, due to time constraints.

P-Emb and P-Sent models (4.3.1, 4.3.2)

We evaluate the P-Emb and P-Sent models, using both bi-directional and uni-directional LSTMs. The
F1 score of our ensembling models is shown in Table 4.3. As expected, bi-LSTM models achieve
higher performance.

LM Fine-tuning LM Transfer
Simple fine-tuning Sequential Unfreezing Concat. F1
v 0.672
Simple fine-tuning v v 0.667
v 0.676
v v 0.673
v 0.673
. . v v 0.667
Sequential Unfreezing v 0.678
4 4 0.682

Table 4.2: Results of the P-LM, pretrained on the EmoCorpus. The first column refers to the fine-
tuning procedure followed in the LM Fine-tuning step, while the second column describes
the fine-tuning way used in LM Transfer step. Concat. stands for our concatenation
method.

P-LM (4.3.3)

For the experiments with the pretrained LMs, we intend to transfer not just the first layer of our net-
work, but rather the whole model, so as to capture more high-level features of language. As mentioned
above, there are three distinct steps concerning the training procedure of this TL approach: (1) LM
pretraining: we train three LMs on the EmoCorpus, EmoCorpus+ and GenCorpus corpora, (2) LM
fine-tuning: we fine-tune the LMs on the IEST dataset, with 2 different ways. The first one is simple
fine-tuning, while the second one is our sequential unfreezing (SU) technique. (3) LM transfer: We
now have 6 LMs, fine-tuned on the IEST dataset. We transfer their weights to our final emotion clas-
sifier, we add attention to the LSTM layers and we experiment again with our 2 ways of fine-tuning
and the concatenation method proposed in Sec. 4.3.3.

When trained on EmoCorpus, the P-LM model has a Fl-score 68.2%. When trained on Emo-
Corpus+, Fl-score is equal to 68.0%. Finally, when trained on GenCorpus, a Fl-score of 67.5%
is obtained. Even though EmoCorpus contains less training examples, P-LMs trained on it learn to
encode more useful information for the task at hand.

In Table 4.2 we present all possible combinations of transferring the P-LM to the IEST task. We
observe that sequential unfreezing consistently outperforms simple fine-tuning. Due to the difficulty
in running experiments for all possible combinations, we compare our best approach, namely SU +
Concat., with P-LMs trained on our three unlabeled Twitter corpora.

Our submitted model is an ensemble of the models with the best performance. More specifically,
we leverage the following models: (1) transfer learning of pretrained word embeddings, (2) transfer
learning of pretrained sentiment classifier, (3) transfer learning of 3 different LMs, trained on 2M,
4M and 5M respectively. We use Unweighted Average (UA) ensembling of our best models from all
aforementioned approaches. Our final results on the evaluation data are shown in Table 4.3.
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Model F1
Bag of Words (BoW) 60.1
Bag of Embeddings (BoE) 60.5

Ensembling (UA) P-Emb + P-Sent | 68.4
Ensembling (UA) P-Sent + P-LM | 69.5
Ensembling (UA) P-Emb + P-LM | 70.1
Ensembling (MV) All 70.0
Ensembling (UA) All 70.2

Table 4.3: Results of our experiments when tested on the evaluation (dev) set. BoW and BoE are our
baselines, while P-Emb, P-Sent and P-LM our proposed TL approaches. UA stands for
Unweighted Average and MV for Majority Voting ensembling.

4.4.4 Discussion

As shown in Table 4.3, we observe that all of our proposed models achieve individually better perfor-
mance than our baselines by a large margin. As far as the ensembling is concerned, both approaches,
MV and UA, yield similar performance improvement over the individual models. In particular, we
notice that adding the P-LM predictions to the ensemble contributes the most. This indicates that
P-LMs encode more diverse information compared to the other approaches.

We also conduct an ablation study. The results are shown in Table 4.4. We notice that, when the
three models are trained with uni-directional LSTM and the same number of parameters, the P-LM
outperforms both the P-Emb and the P-Sent models. As expected, the upgrade to bi-LSTM improves
the results of P-Emb and P-Sent. It could be the case that the augmented feature representation cap-
tured by a bi-directional layer allows the model to make better predictions about the emotion of a given
sentence. We hypothesize that P-LM with bi-directional pretrained language models would have out-
performed both of them. Furthermore, we conclude that both sequential unfreezing for fine-tuning
and the concatenation method enhance the performance of the P-LM approach. As far as sequential
unfreezing is concerned, it permits smooth iterative training of the layers of our model. Therefore,
it preserves the knowledge encoded in the source task and it fine-tunes gradually the layers, starting
from the output layer (task-specific) and proceeding to the hidden layers and finally the embedding
layer (generic).

TL Model F1 | TL Model F1 | TL Model F1
P-Emb 66.8 | P-Sent 67.1 | P-LM 67.5
P-Emb + bidir. 68.4 | P-Sent + bidir. 67.4 | P-LM + SU 67.9
P-Emb + SU 65.4 | P-Sent+ SU 66.5 | P-LM + SU + Concat. | 68.2
P-Emb + SU + Concat. | 66.4 | P-Sent + SU + Concat. | 66.8

Table 4.4: Ablation study of our three proposed transfer learning approaches, namely P-Emb, P-Sent
and P-LM. SU stands for Sequential Unfreezing, bidir. for bi-LSTM, Concat. for the
concatenation method.

4.5 Conclusions

In this work, we describe our deep-learning methods for missing emotion words classification, in the
Twitter domain. The proposed approach is based on an ensemble of Transfer Learning techniques. We
demonstrate that the use of refined, high-level features of text, as the ones encoded in language models,
yields a higher performance. In the future, we aim to experiment with subword-level models, as they
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have shown to consistently face the out-of-vocabulary (OOV) words problem [107, 108], which is
more evident in Twitter. Moreover, we would like to explore other transfer learning approaches.

Finally, we share the source code of our models ', in order to make our results reproducible and
facilitate further experimentation in the field.

! /github.com/alexandra-chron/wassa-2018
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Chapter 5

Transfer Learning from Language Models using an
auxiliary objective

5.1 Introduction

In Natural Language Processing, distributed representations offered by pretrained word vectors such
as word2vec [8] and GloVe [66] have become common initializations for deep learning models. Dis-
tributed word vectors have shown to effectively model word similarities and thus provide a meaningful
starting point for deep learning. Transferring information from large amounts of unlabeled training
data has shown to boost performance over random initialization of models in a variety of downstream
tasks, such as part-of-speech tagging [109], named entity recognition [66] and question answering
[110]. However, context cannot be model adequately by these pretrained word vectors, since they
typically assign a vector to each word. Polysemy, thus, cannot be handled and a certain word’s mean-
ing sometimes evades, as each word only has a fixed vector representation.

Pretrained word representations captured by Language Models (LMs) have recently become popu-
lar in NLP. Pretrained LMs encode contextual information and high-level features of language, mod-
eling syntax and semantics, producing state-of-the-art results across a wide range of tasks, such as
named entity recognition [27], machine translation [111] and text classification [25]. They assign a
different vector to each occurrence of a given word, based on its neighbors. So, they adapt to domain
change and provide rich contextual word embeddings.

However, in cases where contextual embeddings from language models are used as additional
features (e.g. ELMo [32]), results come at a high computational cost and require task-specific archi-
tectures. At the same time, approaches that rely on fine-tuning a LM to the task at hand (e.g. ULMFiT
[25]) depend on pretraining the model on an extensive vocabulary and on employing a sophisticated
slanted triangular learning rate scheme to adapt the parameters of the LM to the target dataset.

We propose a simple and effective transfer learning approach, that leverages LM contextual rep-
resentations and does not require any elaborate scheduling schemes during training. We initially train
a LM on a Twitter corpus and then transfer its weights. We add a task-specific recurrent layer and a
classification layer. The transferred model is trained end-to-end using an auxiliary LM loss, which
allows us to explicitly control the weighting of the pretrained part of the model and ensure that the
distilled knowledge it encodes is preserved.

Our contributions are summarized as follows:

e We show that transfer learning from language models can achieve competitive results, while
also being intuitively simple and computationally effective.

e We address the problem of catastrophic forgetting, by adding an auxiliary LM objective and
using an unfreezing method.

e Our results show that our approach is competitive with more sophisticated transfer learning
methods.
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5.2 Related Work

Unsupervised pretraining has played a key role in deep neural networks, building on the premise that
representations learned for one task can be useful for another task. In NLP, pretrained word vectors
[95, 66] are widely used, improving performance in various downstream tasks, such as part-of-speech
tagging [109] and question answering [110].

Aiming to learn from unlabeled data, Dai et al. [28] use unsupervised objectives such as se-
quence autoencoding and language modeling as pretraining representations. Ramachandran et al.
[111] also pretrain encoder-decoder pairs using language models and fine-tune them to a specific task.
Embeddings from Language Models (ELMo) embeddings [32] are obtained from character-based bi-
directional language models improving the results in a variety of tasks as additional contextual repre-
sentations.

Towards the same direction, Universal Language Model Fine-Tuning (ULMFiT) [25] shows im-
pressive results on a variety of tasks by employing pretrained LMs. The proposed pipeline requires
three distinct steps, that include pretraining the LM, fine-tuning it on a target dataset with an elaborate
scheduling procedure and transferring it to a classification model.

Multi-Task Learning (MTL) via hard parameter sharing [112] in neural networks has proven to be
effective in many NLP problems [113]. More recently, alternative approaches have been suggested
that only share parameters across lower layers [114]. By introducing part-of-speech tags at the lower
levels of the network, the proposed model achieves competitive results on chunking and Combinatory
Category Grammar (CCG) super tagging. Our auxiliary language model objective follows this line of
thought and intends to boost the performance of the higher classification layer.

5.3 Proposed Model

We introduce SiATL, which stands for Single-step Auxiliary loss Transfer Learning. In our proposed
approach, we first train a LM. We then transfer its weights and add a task-specific recurrent layer to
the final classifier. We also employ an auxiliary LM loss to avoid catastrophic forgetting.

5.3.1 Unsupervised Pretraining

We train a word-level language model, which consists of an embedding Long Short-Term Memory
(LSTM) layer [53], 2 hidden LSTM layers and a linear layer. We want to minimize the negative
log-likelihood of the LM:

N T"

R 1 soompon n
L(p) = N Z Zlogp(wt |2, s T 1) (5.1)

n=1t=1

where p(z2|x7, ...,z ) is the distribution of the ' word in the n'" sentence given the t — 1 words
preceding it and NV is total number of sentences.

5.3.2 Transfer & Auxiliary Loss

We transfer the weights of the pretrained model and add one LSTM with a self-attention mechanism
[115, 13].

In order to adapt the contribution of the pretrained model to the task at hand, we introduce an auxiliary
LM loss during training. The joint loss is the weighted sum of the task-specific loss L;,s; and the
auxiliary LM loss Ly s, where 7y is a weighting parameter to enable adaptation to the target task but
at the same time keep the useful knowledge from the source task. Specifically:

L = Ligs + 7Ly (5.2)
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Figure 5.1: High-level overview of our proposed TL architecture. We transfer the pretrained LM add
an extra recurrent layer and an auxiliary LM loss.

5.3.3 Exponential Decay of Joint Loss Weighting Factor

An advantage of the proposed transfer learning method is that the contribution of the LM can be
explicitly controlled in each training epoch. In the first few epochs, the LM should contribute more to
the joint loss of SiATL so that the task-specific layers adapt to the new linguistic distribution. After
the knowledge of the pretrained LM is transferred to the new domain, the task-specific component of
the loss function is more important and joint loss weighting factor () should become smaller. In this
paper, we use an exponential decay for the v over the training epochs.

5.3.4 Sequential Unfreezing

Instead of fine-tuning all the layers simultaneously, we propose unfreezing them sequentially, accord-
ing to Chronopoulou et al. [2]. We first fine-tune only the extra, randomly initialized LSTM and the
output layer for n — 1 epochs. At the nt" epoch, we unfreeze the pretrained hidden layers. We let the
model fine-tune, until epoch k£ — 1. Finally, at epoch k, we also unfreeze the embedding layer and
let the network train until convergence. The values of n and & are obtained through hyperparameter
tuning. We find the sequential unfreezing scheme important, as it minimizes the risk of overfitting to
small datasets.

5.3.5 Optimizers

We use Stochastic Gradient Descent (SGD) for the pretrained LM with a small learning rate, in or-
der to preserve its contextual information and avoid catastrophic forgetting. However, we want the
extra LSTM and softmax layer to train fast and adapt to the target task, so in that case Adam [50] is
employed.
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5.4 Experiments & Results

5.4.1 Experimental Dataset

To pretrain the language model, we collect a dataset of 20 million English Twitter messages, including
approximately 2M unique tokens. We use the 70K most frequent tokens as vocabulary. We evaluate
our model on five datasets: Sent/7 for sentiment analysis [102], PsychExp for emotion recognition
[116], Irony18 for irony detection [117], SCvI and SCv2 for sarcasm detection [118, 119]. More details
about the datasets can be found in Table 5.1.

Dataset Domain # classes # training data # test data
Irony18 Tweets 4 3834 784
Sentl7 Tweets 3 49570 12284
SCv2 Debate Forums 2 1000 2260
SCvl Debate Forums 2 1000 995
PsychExp  Experiences 7 1000 6480

Table 5.1: Datasets used for the downstream tasks.

5.4.2 Experimental Setup

To preprocess the tweets, we use Ekphrasis [89]. For the generic datasets, we use NLTK [120]. For
the Neural Bag-of-Words (NBoW) baseline, we use word2vec [95] 300-dimensional embeddings as
features. For the neural models, we use an LM with an embedding size of 400, 2 hidden layers, 1000
neurons per layer, dropout 0.2 and batch size 32. We add Gaussian noise of size 0.01 to the embedding
layer. A clip norm of 5 is applied, as an extra safety measure against exploding gradients. For each
text classification neural network, we add on top of the transferred LM an LSTM layer of size 100
with self-attention and a softmax classification layer. For developing our models, we use PyTorch
[105] and Scikit-learn [121].

5.5 Results & Discussion

Baselines and Comparison

Table 5.2 summarizes our results. The top two rows detail the baseline performance of the Bag-
of-Words (BoW) and Neural Bag-of-Words (NBoW) models. We observe that when enough data is
available (e.g. Sentl7), baselines provide decent results. Next, the results for the generic classifier ini-
tialized from a pretrained LM (P-LM) are shown with and without sequential unfreezing, followed by
the results of the proposed model SiATL. SiATL is also directly compared with its close relative ULM-
FiT (trained on Wiki-103 or Twitter) and the state-of-the-art for each task; ULMFiT also fine-tunes a
LM for classification tasks. The proposed SiATL method consistently outperforms the baselines, the
P-LM method and ULMFiT in all datasets. Even though we do not perform any elaborate learning
rate scheduling and we limit ourselves to pretraining in Twitter, we obtain higher results in two Twitter
datasets and three generic.

Auxiliary LM objective

The effect of the auxiliary objective is highlighted in very small datasets, such as SCvi, where it
results in an impressive boost in performance (7%). We hypothesize that when the classifier is simply
initialized with the pretrained LM, it overfits quickly, as the target vocabulary is very limited. The
auxiliary LM loss, however, permits refined adjustments to the model and fine-grained adaptation to
the target task.
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Irony18 Sent17 SCv2 SCvl PsychExp
BoW 43.7 61.0 65.1 60.9 25.8
NBoW 45.2 63.0 61.1 51.9 20.3
P-LM 427+£0.6 | 61.24+0.7 | 694£04 | 485£15 | 383 £0.3
P-LM + su 418+12 | 62.1+08 | 699+£1.0 | 484+£1.7 | 387+£1.0
P-LM + aux 455+£09 | 651+06 | 726 £0.7 | 558+ 1.0 | 409+£0.5
SiATL (P-LM +aux+su) | 47.0 £ 1.1 | 66.5+02 | 750 £0.7 | 56.8+2.0 | 458 £ 1.6
ULMFiT (Wiki-103) 23616 | 60505 | 68706 | 56.6 05 | 21.8£0.3
ULMFIiT (Twitter) 41.6£0.7 | 65.6 04 | 67.2£09 | 440£0.7 | 40.2 £ 1.1
State of the art 53.6 68.5 76.0 69.0 57.0

[122] [123] [124] [125]

Table 5.2: Ablation study on various downstream datasets. Average over five runs with standard
deviation. BoW stands for Bag of Words, NBoW for Neural Bag of Words. P-LM stands
for a classifier initialized with our pretrained LM, su for sequential unfreezing and aux for
the auxiliary LM loss. In all cases, F} is employed.

Exponential decay of ~y

For the optimal y interval, we empirically find that exponentially decaying ~y to half of its initial value
over the number of training epochs provides best results for our classification tasks. A heatmap of ~
is depicted in Figure 5.2. We observe that small values of v should be employed, in order to scale the
LM loss in the same order of magnitude as the classification loss over the training period.
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Figure 5.2: Heatmap of the effect of v to F}-score, evaluated on SCv2. The horizontal axis depicts
the initial value of  and the vertical axis the final value of ~.

Sequential Unfreezing

Results show that sequential unfreezing is crucial to the proposed method, as it allows the pretrained
LM to adapt to the target word distribution. The performance improvement is more pronounced when
there is a mismatch between the LM and task domains, i.e., the non-Twitter domain tasks. Specifically
for the PsychExp and SCv2 datasets, sequentially unfreezing yields significant improvement in F}
building upon our intuition.

Number of training examples

Transfer learning is particularly useful when limited training data are available. We notice that for
our largest dataset Sent/7, SIATL outperforms ULMFiT only by a small margin when trained on all
the training examples available (see Table 5.2), while for the small SCv2 dataset, SIATL outperforms
ULMEFiT by a large margin and ranks very close to the state-of-the-art model [124]. As the Sent/7
dataset is by far the largest of the downstream datasets we evaluate our approach on (with approxi-
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mately 60K examples), it is not significantly improved by transfer learning. The effect of our SIATL
method is highlighted, however, in SCv2, which consists of approximately 3K examples. So, our
approach is suitable for settings where very limited labeled data are available.

Moreover, the performance of SiATL vs ULMFiT as a function of the training dataset size is
shown in Figure 5.3. Note that the proposed model achieves competitive results on less than 1000
training examples for the frony18, SCv2, SCvl and PsychExp datasets, demonstrating the robustness
of SIATL even when trained on a handful of training examples. We hypothesize that the pretrained part
of the model has captured a highly informative word representation. It is important to point out that
even if the SCv2, SCvI datasets belong to a non-Twitter domain, our model adjusts to different word
distributions smoothly and results in a competitive performance when trained on only 500 samples.

Finally, the performance of SiATL in Sen!7 is encouraging. The model obtains a 61% F-score
on 3000 training samples, or else on less than 10% of the full training set (49K samples).
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Figure 5.3: Results of our proposed approach (SiATL) (o) and ULMFiT (+) for different datasets as
a function of the number of training examples.

5.6 Conclusions & Future Work

We introduce SiATL, a simple and efficient transfer learning method for text classification tasks. Our
approach is based on pretraining a LM and transferring its weights to a classifier with a task-specific
layer. The model is trained using a task-specific functional with an auxiliary LM loss. SiATL avoids
catastrophic forgetting of the language distribution learned by the pretrained LM. Experiments on
various text classification tasks yield results competitive to the state-of-the-art, demonstrating the
efficacy of our approach. Our method consistently outperforms more sophisticated transfer learning
approaches, such as ULMFiT in all tasks.

In the future, we aim to explore further contextual representations from language models. A first
step in this direction would be to extend our approach to a bi-directional model, as bi-directional
language models have shown to encode deeper information for a given input. We would also like
to conduct experiments with different domains. Furthermore, we would like to experiment with
subword-level segmentation of our pretraining corpus. That way, the out-of-vocabulary problem can
be avoided, which is especially evident in the Twitter domain.
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Chapter 6

Conclusions

In this work, we investigate neural transfer learning methods based on deep learning in order to tackle
a variety of emotion recognition, sentiment analysis and related classification tasks. Our models al-
low training deep neural networks to limited training data and obtain a competitive performance. In
emotion recognition, transferring a sentiment analysis model to an emotion recognition model can
contribute to creating systems capable of analyzing and interpreting human emotions and behaviors.
Moreover, pretrained representations captured by language models offer meaningful contextual word
representations that encode high-level features of language and capture syntax and semantics. A novel
way of using pretrained representations from a language model in a classification model, together with
an auxiliary language model objective is proposed. In the context of this thesis, we propose a novel
way of leveraging pretrained classification models and the feature representations captured by lan-
guage models to obtain robust results when there is a scarcity of labeled data.

First, we implement a deep learning model in order to tackle an implicit emotion recognition
classification task. We experiment with different transfer learning approaches. Specifically, we use
pretrained word embeddings, a pretrained sentiment analysis classification model and pretrained lan-
guage models. The first two approaches rely on bi-directional multi-layer LSTM models with a self-
attention mechanism, while the third one uses a uni-directional multi-layer LSTM model. We use
ensembling to determine which approaches are most helpful. By leveraging the representation ob-
tained by a pretrained sentiment analysis model and using it in our emotion recognition classification
task, we examine whether a representation learned in a supervised setting for a source dataset can be
adapted to a similar dataset efficiently. The idea behind this is that, provided that the source task is
more generic than the second task, which is the case in our setting, its feature representation might
contain information crucial to improving the performance on the target task and rank close to state-
of-the-art.

Second, we propose a novel and conceptually simple transfer learning model that leverages rep-
resentations from language models and enhances the final transferred classification model with an
auxiliary language modeling objective. As a problem that often occurs when fine-tuning a language
model to a small labeled dataset is overfitting, which is caused by catastrophic forgetting, we pro-
pose a straightforward approach that directly faces this issue. The motivation of adding the auxiliary
objective to the transferred model is closely related to multi-task learning. Since our model was pre-
trained in language modeling, it has learned a feature representation that is generic and models the
word distribution of a certain domain. In order to preserve this knowledge, we gradually fine-tune
the language model to the classification task at hand. Following this line of thought, we also employ
two different training optimizers. The first one is used in the pretrained part of the model and does
not permit fast adaptation to the target task, while the second one is used in the newly added layers of
the model and results in rapid adjustment to the target task. In order to show the effect of our trans-
fer learning approach, we evaluate on 5 datasets, 3 of which belong to a different domain (namely
Sarcasm Corpus 1, Sarcasm Corpus 2 and PsychExp) than the pretraining corpus.

Moreover, we can improve our transfer learning model by adding other auxiliary objectives, apart
from the language modeling objective. It could be possible that a task that encodes semantics, such as
question answering or next sentence prediction would be beneficial as an auxiliary objective. More
refined word representations could then be trained, that could be applied to natural language inference
and sequence tagging tasks.
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A limitation of the proposed approach is that sequential unfreezing requires a careful choice of
hyperparameters. In the future, in order to avoid extensive hyperparameter tuning, we plan to model
the pretrained language modeling objective and the classification objective as two players involved in
amin-max game. Inspired by game theory, we should be able to formulate the problem as adversarial,
in a small area around the local loss minimum of the pretrained language model. Then, we could
investigate adversarial methods of training. For instance, we could incorporate optimistic Adam [126],
that offers the possibility of easing training oscillations caused by Adam optimizer.

Another future direction would be to experiment with domain-adversarial training [127]. The
problem of transfer learning is that when source and target distribution are very different, which is
often the case, the pretrained model is unable to adjust to the target task. So, an idea would be to build
a shared feature representation for different domains, by replacing the auxiliary language modeling
objective with a domain classification objective, the target of which would be to predict the domain
of a given sentence (source or target). Instead of minimizing this loss, we would intend to maximize
it, while also minimizing the target-task classification loss. The intuition behind this approach is that,
if the model is unable to distinguish whether a given input belongs to the source or target dataset,
it has probably learnt a robust generic feature representation that can tackle both tasks and avoids
catastrophic forgetting.

Finally, we plan to incorporate subword information in our language models and experiment with
bi-directional architectures. We also plan to pretrain language models on generic corpora, and inves-
tigate adaptive schemes for v decay over training epochs.
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Appendix A

Abbreviations

(AI): Artificial Intelligence

(ANN): Artificial Neural Network
(Bi-LSTM): Bi-directional LSTM
(BoW): Bag-of-Words

(CBOW): Continuous Bag-Of-Words
(CNN): Convolutional Neural Network
(CV): Computer Vision

(DL): Deep Learning

(DNNs): Deep Neural Networks
(GPU): Graphical Processor Unit
(GD): Gradient Descent

(IE): Information Extraction

(LM): Language Model

(LR): Logistic Regression classifier
(LSTM): Long Short-Term Memory unit
(ML): Machine Learning

(MT): Machine Translation

(MTL): Multi-Task learning

NBoW: Neural Bag-of-Words

(NLP): Natural Language Processing
(POS): Part-Of-Speech

(QA): Question Answering

(RNNs): Recurrent Neural Networks
(SGD): Stochastic Gradient Descent
(SVM): Support Vector Machine classifier
(TL): Transfer Learning
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